Skip to main content
Log in

Efficient plant regeneration of watermelon (Citrullus lanatus Thunb.) via somatic embryogenesis and assessment of genetic fidelity using ISSR markers

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

A simple and effective somatic embryogenic system was established for watermelon (Citrullus lanatus) cv. ‘Arka Manik’. Embryogenic callus was obtained from leaf explants of 20-d-old in vitro-grown seedlings cultured on embryogenic callus induction medium. The highest frequency of embryogenic callus induction (96.8%) occurred on Murashige and Skoog (MS) medium supplemented with 2.44 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 2.27 μM thidiazuron (TDZ). Transfer of embryogenic calluses with proembryogenic masses to embryo maturation medium led to the asynchronous development of somatic embryos (SEs), which progressed from the globular stage to the cotyledonary stage. The maximum number of SEs/explant (16.1 ± 0.24) was obtained on MS medium supplemented with 2.44 μM 2,4-D, 2.27 μM TDZ, and 30 g L−1 sucrose. Plantlet conversion from cotyledonary-stage SEs was tested on different strengths of MS medium (quarter-, half-, and full-strength) lacking plant growth regulators. The highest frequencies of germination (91.5%) and survivability (82.1%) of plantlets were achieved on full-strength MS medium. Transverse sections of embryogenic callus revealed SE development from callus cells near the epidermis. Secondary SEs occasionally formed from globular-shaped primary embryos. Genetic fidelity of mother plants and ex vitro plants was confirmed by inter-simple sequence repeat (ISSR) markers. The present study is the first report on the use of molecular markers in in vitro culture of watermelon. The developed protocol facilitates rapid production of true-to-type watermelon plants by somatic embryogenesis and thus could serve to generate effective target material for genetic transformation protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Akashi K, Morikawa K, Yokota A (2005) Agrobacterium-mediated transformation system for the drought and excess light stress-tolerant wild watermelon (Citrullus lanatus). Plant Biotechnol 22:13–18

    Article  CAS  Google Scholar 

  • Anonymous (1992) The Wealth of India—a dictionary of Indian raw materials and industrial products, Vol. 3. Ca-Ci. Publication and Information Directorate, CSIR, New Delhi, pp 606–609

  • Bhatia R, Singh KP, Jhang T, Sharma TR (2009) Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Sci Hortic 119:208–211

    Article  CAS  Google Scholar 

  • Bhattacharya S, Bandopadhyay TK, Ghosh PG (2010) Somatic embryogenesis in Cymbopogon pendulus and evaluation of clonal fidelity of regenerants using ISSR marker. Sci Hortic 123:505–513

    Article  CAS  Google Scholar 

  • Cho MA, Moon CY, Liu JR, Choi PS (2008) Agrobacterium-mediated transformation in Citrullus lanatus. Biol Plant 52:365–369

    Article  CAS  Google Scholar 

  • Choi PS, Soh WY, Kim YS, Yoo OJ, Liu JR (1994) Genetic transformation and plant regeneration of watermelon using Agrobacterium tumefaciens. Plant Cell Rep 13:344–348

    Article  CAS  PubMed  Google Scholar 

  • Compton ME, Gray DJ (1993) Somatic embryogenesis and plant regeneration from immature cotyledons of watermelon. Plant Cell Rep 12:61–65

    Article  CAS  PubMed  Google Scholar 

  • Compton ME, Gray DJ, Gaba VP (2004) Use of tissue culture and biotechnology for the genetic improvement of watermelon. Plant Cell Tissue Organ Cult 77:231–243

    Article  CAS  Google Scholar 

  • Debeaujon I, Branchard M (1993) Somatic embryogenesis in the Cucurbitaceae. Plant Cell Tissue Organ Cult 34:91–100

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellul P, Ríos G, Atarés A, Roig LA, Serrano R, Moreno V (2003) The expression of Saccharomyces cerevisiae HAL1 gene increases salt tolerance in transgenic watermelon [Citrullus lanatus (Thunb.) Matsun. & Nakai.]. Theor Appl Genet 107:462–469

    Article  CAS  PubMed  Google Scholar 

  • Elmeer KMS, Hennerty MJ (2008) Observations on the combined effects of light, NAA and 2,4-D on somatic embryogenesis of cucumber (Cucumis sativus) hybrids. Plant Cell Tissue Organ Cult 95:381–384

    Article  CAS  Google Scholar 

  • Faisal M, Alatar AA, Ahmad N, Anis M, Hegazy AK (2012) Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 4°C. Molecules 17:5050–5061

    Article  CAS  PubMed  Google Scholar 

  • FAO (2013) Food and Agricultural Organization. http://faostat3.fao.org. Cited 27 April 2015

  • Fassuliotis G, Nelson BV (1988) Interspecific hybrids of Cucumis metuliferus × C. anguria obtained through embryo culture and somatic embryogenesis. Euphytica 37:53–60

    Article  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology—the importance of virus resistance. In Vitro Cell Dev Biol—Plant 40:346–358

  • Gray DJ, McColley DW, Compton ME (1993) High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J Am Soc Hortic Sci 118:425–432

    Google Scholar 

  • Hall CV (2004) Watermelons as food in the 22 century. In: Nath P, Gaddagimath PB, Dutta OP (eds) Food security and vegetables: a global perspective. Dr. Prem Nath Agricultural Science Foundation, Bangalore, India, pp 135–148

    Google Scholar 

  • Heikrujam M, Kumar D, Kumar S, Gupta SC, Agrawal V (2014) High efficiency cyclic production of secondary somatic embryos and ISSR based assessment of genetic fidelity among the emblings in Calliandra tweedii (Benth.). Sci Hortic 177:63–70

    Article  Google Scholar 

  • Huang WJ, Ning GG, Liu GF, Bao MZ (2009) Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers. Biol Plant 53:159–163

    Article  Google Scholar 

  • Huang YC, Chiang CH, Li CM, Yu TA (2011) Transgenic watermelon lines expressing the nucleocapsid gene of Watermelon silver mottle virus and the role of thiamine in reducing hyperhydricity in regenerated shoots. Plant Cell Tissue Organ Cult 106:21–29

    Article  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution rurale. Bull Soc Vaudoise Sci Nat 44:223–270

    Google Scholar 

  • Joshi P, Dhawan V (2007) Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol Plant 51:22–26

    Article  CAS  Google Scholar 

  • Kanita A, Kothari SI (2002) High efficiency adventitious shoot bud formation and plant regeneration from leaf explants of Dianthus chinensis L. Sci Hortic 96:205–212

    Article  Google Scholar 

  • Kintzios S, Sereti E, Bluchos P, Drossopoulos JB, Kitsaki CK, Liopa-Tsakalidis A (2002) Growth regulator pretreatment improves somatic embryogenesis from leaves of squash (Cucurbita pepo L.) and melon (Cucumis melo L.). Plant Cell Rep 21:1–8

    Article  CAS  Google Scholar 

  • Kuijpers AM, Bouman H, de Klerk GJ (1996) Increase of embryogenic callus formation in cucumber by initial culture on high concentration of 2,4-dichlorophenoxyacetic acid. Plant Cell Tissue Organ Cult 46:81–83

    Article  CAS  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Ku HM, Chiang YH, Ho HY, Yu TA, Jan FJ (2012) Development of transgenic watermelon resistant to Cucumber mosaic virus and Watermelon mosaic virus by using a single chimeric transgene construct. Transgenic Res 21:983–993

    Article  CAS  PubMed  Google Scholar 

  • Loiseau J, Michaux-Ferrière N, Le Deunff Y (1998) Histology of somatic embryogenesis in pea. Plant Physiol Biochem 36:683–687

    Article  CAS  Google Scholar 

  • Maruyama E, Hosoi Y, Ishii K (2003) Somatic embryo culture for propagation, artificial seed production, and conservation of sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.). J For Res 8:1–8

    Article  Google Scholar 

  • Matthes M, Singh R, Cheah SC, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawa H, Saijyo T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci Hortic 29:85–92

    Article  Google Scholar 

  • Parimalan R, Akshatha V, Giridhar P, Ravishankar GA (2010) Somatic embryogenesis and Agrobacterium-mediated transformation in Bixa orellana (L.). Plant Cell Tissue Organ Cult 105:317–328

    Article  Google Scholar 

  • Park SM, Lee JS, Jegal S, Jeon BY, Jung M, Park YS, Han SL, Shin YS, Her NH, Lee JH, Lee MY, Ryu KH, Yang SG, Harn CH (2005) Transgenic watermelon rootstock resistant to CGMMV (cucumber green mottle mosaic virus) infection. Plant Cell Rep 24:350–356

    Article  CAS  PubMed  Google Scholar 

  • Paul A, Mitter K, Raychaudhuri SS (2009) Effect of polyamines on in vitro somatic embryogenesis in Momordica charantia (L.). Plant Cell Tissue Organ Cult 97:303–311

    Article  CAS  Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301

    Article  Google Scholar 

  • Rai MK, Phulwaria M, Harish GAK, Shekhawat NS, Jaiswal U (2012) Genetic homogeneity of guava plants derived from somatic embryogenesis using SSR and ISSR markers. Plant Cell Tissue Organ Cult 111:259–264

    Article  CAS  Google Scholar 

  • Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica 128:9–17

    Article  Google Scholar 

  • Rohlf FJ (2000) NTSYS-PC: Numerical Taxonomy and Multivariate Analysis System, version 2.1. Exeter Software, Setauket

    Google Scholar 

  • Sagare AP, Suhasini K, Krishnamurthy KV (1995) Histology of somatic embryo initiation and development in chickpea (Cicer arietinum L.). Plant Sci 109:87–93

    Article  CAS  Google Scholar 

  • Sharma SK, Millam S (2004) Somatic embryogenesis in Solanum tuberosum L: a histological examination of key developmental stages. Plant Cell Rep 23:115–119

    CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Thiruvengadam M, Mohamed SV, Yang CH, Jayabalan N (2006) Development of an embryogenic suspension culture of bitter melon (Momordica charantia L.). Sci Hortic 109:123–129

    Article  CAS  Google Scholar 

  • Urbanek A, Zechmann B, Müller M (2004) Plant regeneration via somatic embryogenesis in Styrian pumpkin: cytological and biochemical investigations. Plant Cell Tissue Organ Cult 79:329–340

    Article  CAS  Google Scholar 

  • Vega R, Vásquez N, Espinoza AM, Gatica AM, Valdez-Melara M (2009) Histology of somatic embryogenesis in rice (Oryza sativa cv. 5272). Rev Biol Trop 57:141–150

    Google Scholar 

  • Vengadesan G, Selvaraj N, Anand RP, Gaba V, Ganapathi A (2005) Ontogeny of somatic embryos in cucumber (Cucumis sativus L.). In Vitro Cell Dev Biol—Plant 41:789–793

    Article  CAS  Google Scholar 

  • Vinoth A, Ravindhran R (2015) Reduced hyperhydricity in watermelon shoot cultures using silver ions. In Vitro Cell Dev Biol—Plant 51:258–264

  • Wang HZ, Zhao PJ, Xu JC, Zhao H, Zhang HS (2003) Virus resistance in transgenic watermelon plants containing a WMV-2 coat protein gene. J Genet Genom 30:70–75

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the management of Loyola College, Chennai, for providing the laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ravindhran.

Additional information

Editor: Jeffrey Adelberg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinoth, A., Ravindhran, R. Efficient plant regeneration of watermelon (Citrullus lanatus Thunb.) via somatic embryogenesis and assessment of genetic fidelity using ISSR markers. In Vitro Cell.Dev.Biol.-Plant 52, 107–115 (2016). https://doi.org/10.1007/s11627-015-9731-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9731-8

Keywords

Navigation