Skip to main content
Log in

Field performance evaluation and genetic integrity assessment in Argyranthemum ‘Yellow Empire’ plants recovered from cryopreserved shoot tips

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Field performance evaluation and genetic integrity assessment were conducted in Argyranthemum plants derived from cryopreserved shoot tips. Some variations in root formation and vegetative growth were found in the plants following cryopreservation, but morphologies of the leaves and flowers, and color, number and size of the flowers remained unchanged in the plants recovered from cryopreservation, compared with the control. Assessments of genetic integrity by the two molecular markers: inter simple sequence repeat (ISSR) and amplified fragment length polymorphism (AFLP) did not detect any polymorphic bands across the plants tested following cryopreservation. These data indicate that cryopreservation reduces, to a certain degree, root formation and vegetative growth, but it does not alter morphologies of leaves and flowers, may not cause any genetic alternations, and has no adverse effects on quantity and quality of the flowers. Therefore, the droplet vitrification cryopreservation can be considered promising for long-term preservation of Argyranthemum germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Ahuja S, Mandal BB, Dixit S, Srivastava PS (2002) Molecular, phenotypic and biosynthetic stability in Dioscorea floribunda plants derived from cryopreserved shoot tips. Plant Sci 5:971–977

    Article  Google Scholar 

  • Ai PF, Lu LP, Song JJ (2012) Cryopreservation of in vitro-grown shoot-tips of Rabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tissue Organ Cult 108:381–387

    Article  Google Scholar 

  • Aronen TS, Krajnakova J, Häggman HM, Ryynänen LA (1999) Genetic fidelity of cryopreserved embrogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    Article  CAS  Google Scholar 

  • Ashmore SE, Drew RA, Kaity A (2011) Storage stability using cryopreservation: a case study in papaya. Acta Horticult 918:125–130

    Article  CAS  Google Scholar 

  • Benson EE (2014) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219

    Article  Google Scholar 

  • Bornet B, Branchard M (2001) Nonachored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19:209–215

    Article  CAS  Google Scholar 

  • Brickell C (1999) Encyclopedia of garden plants. The Royal Horticultural Society, London

    Google Scholar 

  • Castillo NRF, Bassil NV, Wada S, Reed BM (2010) Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol Plant 46:246–256

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dresler-Nurmi A, Tereffework Z, Kaijalainen S, Lindström K, Hataokka A (2000) Silver stained polyacrylamide gels and fluorescence-based automated capillary electrophoresis for detection of amplified fragment length polymorphism patterns obtained from white-rot fungi in the genus Trametes. J Microbiol Meth 41:161–172

    Article  CAS  Google Scholar 

  • Elameen A, Fjellheim S, Larsen A, Rognli OA, Sundheim L, Msolla S, Masumba E, Klemsdal SS (2008) Analysis of genetic diversity in a sweet potato (Ipomoea batatas L.) germplasm collection from Tanzania as revealed by AFLP. Genet Res Crop Evol 55:397–408

    Article  CAS  Google Scholar 

  • Engelmann F (1997) In vitro conservation methods. In: Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CAB International, Oxford, pp 119–161

    Google Scholar 

  • Hao YJ, Liu QL, Deng XX (2001) Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology 43:46–53

    Article  CAS  PubMed  Google Scholar 

  • Hao YJ, You CX, Deng XX (2002) Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation sensitive amplified polymorphism in strawberry plants recovered from cryopreservation. Cryo Letters 23:37–46

    PubMed  Google Scholar 

  • Harding K (2004) Genetic intergrity of cryopreserved plant cells: a review. Cryo Letters 25:3–22

    PubMed  Google Scholar 

  • Harding K, Staines H (2001) Biometric analysis of phenotypic characters of potato shoot tips recovered from tissue culture, dimethyl sulphoxide treatment and cryopreservation. Cryo Letters 22:255–262

    CAS  PubMed  Google Scholar 

  • Hirai D, Sakai A (1999) Cryopreservation of in vitro-grown meristems of potato (Solanum tuberosum L.) by encapsulation-vitrification. Potato Res 42:153–160

    Article  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Jokipii S, Ryynänen L, Kallio PT, Aronen T, Häggman H (2004) A cryopreservation method maintaining the genetic fidelity of a model forest tree, Populus tremula L. × Populus tremuloides Michx. Plant Sci 3:799–806

    Article  Google Scholar 

  • Kaity A, Ashmore SE, Drew RA (2009) Field performance evaluation and genetic integrity assessment of cryopreserved papaya clone. Plant Cell Rep 28:1421–1430

    Article  CAS  PubMed  Google Scholar 

  • Kaity A, Drew RA, Ashmore SE (2013) Genetic and epigenetic integrity assessment of acclimatized papaya plants regenerated directly from shoot-tips following short- and long term cryopreservation. Plant Cell Tissue Organ Cult 112:75–86

    Article  CAS  Google Scholar 

  • Kulus D, Zalewska M (2014) Cryopreservation as a tool used in long-term storage of ornamental species—a review. Sci Hortic 168:88–107

    Article  Google Scholar 

  • Liu YG, Liu LX, Wang L, Gao AY (2008) Determination of genetic stability in surviving apple shoots following cryopreservation by vitrification. Cryo Letters 29:7–14

    PubMed  Google Scholar 

  • Mandal BB, Ahuja-Ghosh S, Srivastava PS (2008) Cryopreservation of Dioscorea rotundata Poir.: a comparative study with two cryogenic procedures and assessment of true-to type of regenerants by RAPD analysis. Cryo Letters 29:399–408

    CAS  PubMed  Google Scholar 

  • Martín C, Gozález-Benito ME (2005) Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration. Cryobiology 51:281–289

    Article  PubMed  Google Scholar 

  • Martín C, Cervera MT, Gonzalez-Benito ME (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum × morifolium Ramat) after different stages of an encapsulation–dehydration cryopreservation protocol. J Plant Physiol 168:158–166

    Article  PubMed  Google Scholar 

  • Medina JJ, Clavero-Ramírez I, González-Benito ME, Gálvez-Farfán J, López-Aranda JM, Soria C (2007) Field performance characterization of strawberry (Fragaria x ananassa Duch.) plants derived from cryopreserved apices. Sci Hortic 113:28–32

    Article  Google Scholar 

  • Minäno HS, Gonzalez-Benito ME, Martin C (2009) Molecular characterization and analysis of somaclonal variation in chrysanthemum cultivars using RAPD markers. Sci Hortic 122:238–243

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Peredo EL, Arroyo-García R, Reed BM, Revilla MÁ (2008) Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.). Cryobiology 57:234–241

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238

    Article  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc, numerical taxonomy and multivariate analysis system, v.2.02. Exeter Software, New York

    Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  PubMed  Google Scholar 

  • Seo MJ, Shin JH, Sohn JK (2007) Cryopreservation of dormant herbaceous peony (Paeonia lactiflora pall.) shoot-tips by desiccation. Cryo Letters 28:207–213

    CAS  PubMed  Google Scholar 

  • Skyba M, Urbanová M, Kapchina-Toteva V, Košuth J, Harding K, Čellárová E (2010) Physiological, biochemical and molecular characteristics of cryopreserved Hypericum perforatum L. shoot tips. Cryo Letters 31:249–260

    CAS  PubMed  Google Scholar 

  • Sneath PA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco

    Google Scholar 

  • Tanaka Y, Katsumoto Y, Brugliera F, Mason J (2005) Genetic engineering in floriculture. Plant Cell Tissue Org Cult 80:1–24

    Article  CAS  Google Scholar 

  • Walter E, Erich G, Nils B, Siegmund S (2008) Zander—dictionary of plant names. Eugen Ulmer KG, Germany

    Google Scholar 

  • Wang QC, Perl A (2006) Cryopreservation in floricultural plants. In: da Silva JT (ed) Floricultral, ornamental and plant biotechnology: advances and topics. Global Science Books, London, pp 523–539

    Google Scholar 

  • Wang B, Wang RR, Cui ZH, Bi WL, Li JW, Li BQ, Ozudogru EA, Volk GM, Wang QC (2014) Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnol Adv 32:583–595

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZB, Lee Y, Haugslien S, Sivertsen A, Skjeseth G, Clarke JHL, Wang QC, Blystad D-R (2014) Cryotherapy could not eradicate Chrysanthemum stunt viroid from infected Argyranthemum maderense ‘Yellow Empire’. Acta Hortic 1039:201–208

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiao-Chun Wang or Dag-Ragnar Blystad.

Additional information

Editor: Ewen Mullins

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Skjeseth, G., Elameen, A. et al. Field performance evaluation and genetic integrity assessment in Argyranthemum ‘Yellow Empire’ plants recovered from cryopreserved shoot tips. In Vitro Cell.Dev.Biol.-Plant 51, 505–513 (2015). https://doi.org/10.1007/s11627-015-9707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9707-8

Keywords

Navigation