Skip to main content
Log in

Agrobacterium tumefaciens-mediated genetic transformation and production of stable transgenic pearl millet (Pennisetum glaucum [L.] R. Br.)

  • Genetic Transformation
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

A synthetic gene encoding the antimicrobial peptide magainin has been designed, cloned, and engineered for regulation by the cauliflower mosaic virus (CaMV) 35S promoter and the nopaline synthase (nos) terminator. The plant expression cassette was introduced into the vector pSB11-bar (with the glyphosate [Basta®] resistance gene, bar), and the recombinant plasmid was mobilized into Agrobacterium tumefaciens strain LBA4404 for the generation of a super-binary vector pSB111-bar-mag. Magainins, positively charged amphipathic antimicrobial peptides of 21–26 amino acid residues, are potential candidates for the development of disease resistant transgenic plants. Six-wk-old pearl millet (Pennisetum glaucum [L.] R. Br.) calli and A. tumefaciens harboring pSB111-bar-mag were cocultivated in a medium supplemented with 400 μM acetosyringone and 3.3 mM l-cysteine. Out of 3,000 infected calli subjected to selection on phosphinothricin medium, 82 calli showed sectors of healthy growth, resulting in a transformation frequency of 2.73%. Among 13 Basta-tolerant putative transformed plants, eight were fertile and their transgenic nature and expression of the transgene was characterized by Southern and Northern blot analyses, respectively. Subsequent T1 progenies co-segregated for bar and magainin genes in a 3:1 ratio. Bioassays that challenged the eight transgenic T1 plant progenies against three highly virulent strains of Sclerospora graminicola, viz., Sg 384, Sg 445, and Sg 492 failed to show resistance. The failure of synthetic magainin gene to confer resistance against downy mildew in pearl millet may be attributed to the complexity of the cell wall and cell membrane of the pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Aldemita R. R.; Hodges T. K. Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. Planta 199: 612–617; 1996.

    Article  CAS  Google Scholar 

  • Arencibia A. D.; Carmona E. R.; Tellez P.; Chan M. T.; Yu S. M.; Trujillo L. E.; Oramas P. An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res. 7: 213–222; 1998.

    Article  CAS  Google Scholar 

  • Arulselvi I. P.; Michael P.; Umamaheswari S.; Krishnaveni S. Agrobacterium-mediated transformation of Sorghum bicolor for disease resistance. Int. J. Pharm. Biol. Sci. 1: 272–281; 2010.

    Google Scholar 

  • Barrell P. J.; Conner A. J. Expression of a chimeric magainin gene in potato confers improved resistance to the phytopathogen Erwinia carotovora. Open Plant Sci. J. 3: 14–21; 2009.

    Article  CAS  Google Scholar 

  • Bechinger B. Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J. Membr. Biol. 156: 197–211; 1997.

    Article  CAS  PubMed  Google Scholar 

  • Brunaud V.; Balzergue S.; Dubreucq B.; Aubourg S.; Samson F.; Chauvin S.; Bechtold N.; Cruaud C.; DeRose R.; Pelletier G.; Lepiniec L.; Caboche M.; Lecharny A. T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep. 3: 1152–1157; 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Campisi L.; Yang Y.; Yi Y.; Heilig E.; Herman B.; Cassista A. J.; Allen D. W.; Xiang H.; Jack T. Generation of enhancer trap lines in Arabidopsis and characterization of expression patterns in the inflorescence. Plant J. 17: 699–707; 1999.

    Article  CAS  PubMed  Google Scholar 

  • Chakrabarti A.; Ganapati T. R.; Mukherjee P. K.; Bapat V. A. MSI-99, a magainin analogue, imparts enhanced disease resistance in transgenic tobacco and banana. Planta 216: 587–596; 2003.

    CAS  PubMed  Google Scholar 

  • Chen X.; Equi R.; Baxter H.; Berk K.; Han J.; Agarwal S.; Zale J. A high-throughput transient gene expression system for switchgrass (Panicum virgatum L.) seedlings. Biotechnol. Biofuels 3: 9; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis A. J.; Dale N. M.; Ferreira F. J. Pearl millet as an alternative feed ingredient in broiler diets. J. Appl. Poult. Res. 12: 137–144; 2003.

    Article  Google Scholar 

  • DeGray G.; Rajasekaran K.; Smith F.; Sanford J.; Daniell H. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127: 852–862; 2001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ejeta G.; Hasen M. M.; Mertz E. T. In vitro digestibility and amino acid composition of pearl millet (Pennisetum typhoides) and other cereals. Proc. Natl. Acad. Sci. U. S. A. 84: 6016–6019; 1987.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elliott A. R.; Campbell J. A.; Brettell R. I. S.; Grof C. P. L. Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Aust. J. Plant Physiol. 25: 739–743; 1998.

    Article  CAS  Google Scholar 

  • Enriquez-Obregon G. A.; Prieto-Samsonov D. L.; de la Riva G. A.; Perez M.; Selman-Housein G.; Vazquez-Padron R. I. Agrobacterium-mediated Japonica rice transformation: a procedure assisted by an anti-necrotic treatment. Plant Cell Tiss. Organ Cult. 59: 159–168; 1999.

    Google Scholar 

  • Filipenko E. A.; Filipenko M. L.; Deineko E. V.; Shumnyi V. K. Analysis of integration sites of t-DNA insertions in transgenic tobacco plants. Cytol Genet 41: 199–203; 2007.

    Article  Google Scholar 

  • Frame B. R.; Shou H.; Chikwamba R. K.; Zhang Z.; Xiang C.; Fonger T. M.; Pegg S. E. K.; Li B.; Nettleton D. S.; Pei D.; Wang K. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129: 13–22; 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gadoury D. M.; Cadle-Davidson L.; Wilcox W. F.; Dry I. B.; Seem R. C.; Milgroom M. G. Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant Pathol. 13: 1–16; 2012.

    Article  PubMed  Google Scholar 

  • Girgi M.; O’Kennedy M. M.; Morgenstern A.; Mayer G.; Lorz H.; Oldach K. H. Transgenic and herbicide resistant pearl millet (Pennisetum glaucum L.) R.Br. via microprojectile bombardment of scutellar tissue. Mol. Breed. 10: 243–252; 2002.

    Article  CAS  Google Scholar 

  • Goldberg J. B.; Ohman D. E. Cloning and expression in Pseudomonas aeruginosa of a gene involved in the production of alginate. J. Bacteriol. 158: 1115–1121; 1984.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldman J. J.; Hanna W. W.; Fleming G.; Ozias-Akins P. Fertile transgenic pearl millet [Pennisetum glaucum (L.) R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem, inflorescence and immature embryo-derived embryogenic tissues. Plant Cell Rep. 21: 999–1009; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Gough M.; Hancock R. E. W.; Kelly N. M. Anti-endotoxin activity of cationic peptide antimicrobial agents. Infect. Immun. 64: 4922–4927; 1996.

    CAS  PubMed Central  PubMed  Google Scholar 

  • He Y.; Jones H. D.; Chen S.; Chen X. M.; Wang D. W.; Li K. X.; Wang D. S.; Xia L. Q. Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. var. durum cv Stewart) with improved efficiency. J. Exp. Bot. 61: 1567–1581; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hensel G.; Kastner C.; Oleszczuk S.; Riechen J.; Kumlehn J. Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int. J. Plant Genomics. 2009. doi:10.1155/2009/835608.

    PubMed Central  PubMed  Google Scholar 

  • Hess K. M.; Dudley M. W.; Lynn D. G.; Joerger R. D.; Binns A. N. Mechanism of phenolic activation of Agrobacterium virulence genes: development of a specific inhibitor of bacterial sensor/response systems. Proc. Natl. Acad. Sci. U. S. A. 88: 7854–7858; 1991.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hill G. M.; Hanna W. W. Nutritive characteristics of pearl millet grain in beef cattle diets. J. Anim. Sci. 68: 2061–2066; 1990.

    CAS  PubMed  Google Scholar 

  • Ishida Y.; Hiei Y.; Komari T. Agrobacterium-mediated transformation of maize. Nat. Protoc. 2: 1614–1621; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Jha P.; Shashi R. A.; Agnihotri P. K.; Kulkarni V. M.; Bhat V. Efficient Agrobacterium- mediated transformation of Pennisetum glaucum (L.) R. Br. Using shoot apices as explants source. Plant Cell Tiss. Organ Cult. 107: 501–512; 2011.

    Article  CAS  Google Scholar 

  • Jefferson R. A.; Kavanagh T. A.; Bevan M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907; 1987.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joubert P.; Beaupère D.; Lelièvre P.; Wadouachi A.; Sangwan R. S.; Sangwan-Norreel B. S. Effects of phenolic compounds on Agrobacterium vir genes and gene transfer induction—a plausible molecular mechanism of phenol binding protein activation. Plant Sci. 162: 733–743; 2002.

    Article  CAS  Google Scholar 

  • Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes. Annu. Rev. Phytopathol. 44: 41–60; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Komari T.; Kubo T. Methods of genetic transformation: Agrobacterium tumefaciens. In: Vasil I. K. (ed) Molecular Improvement of Cereal Crops. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 43–82; 1999.

  • Kourie J. I.; Shorthouse A. A. Properties of cytotoxic peptide-formed ion channels. Am. J. Physiol. Cell Physiol. 278: C1063–C1087; 2000.

    CAS  PubMed  Google Scholar 

  • Kristyanne E. S.; Kim K. S.; Stewart J. M. Magainin 2 effects on the ultrastructure of five plant pathogens. Mycologia 89: 353–360; 1997.

    Article  CAS  Google Scholar 

  • Lambe P.; Dinant M.; Matagne R. F. Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and β-glucuronidase (GUS) genes in transgenic pearl millet (Pennisetum glaucum) callus. Plant Sci. 108: 51–62; 1995.

    Article  CAS  Google Scholar 

  • Lee Y. W.; Jin S.; Sim W. S.; Nester E. W. The sensing of plant signal molecules by Agrobacterium: genetic evidence for direct recognition of phenolic inducers by the VirA protein. Gene 179: 83–88; 1996.

    Article  CAS  PubMed  Google Scholar 

  • Li L.; Jia Y.; Hou Q.; Charles T. C.; Nester E. W.; Pan S. Q. A global pH sensor: Agrobacterium sensor protein ChvG regulates acid-inducible genes on its two chromosomes and Ti plasmid. Proc. Natl. Acad. Sci. U. S. A. 99: 12369–12374; 2002.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Q.; Lawrence C. B.; Xing H. Y.; Babbitt R. A.; Bass W. T.; Maiti I. B.; Everett N. P. Enhanced disease resistance conferred by expression of an antimicrobial magainin analog in transgenic tobacco. Planta 212: 635–639; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Madhavilatha A.; Rao K. V.; Reddy T. P.; Reddy V. D. Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep. 25: 927–935; 2006.

    Google Scholar 

  • Madhavilatha A.; Rao K. V.; Reddy V. D. Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci. 169: 657–667; 2005.

    Article  Google Scholar 

  • Malathi B.; Ramesh S.; Rao K. V.; Reddy V. D. Agrobacterium-mediated genetic transformation and production of semilooper resistant transgenic castor (Ricinus communis L.). Euphytica 147: 441–449; 2006.

    Article  CAS  Google Scholar 

  • Maloy W. L.; Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers 3: 105–122; 1995.

    Article  Google Scholar 

  • May G. D.; Afza R.; Mason H. S.; Wiecko A.; Novak F. J.; Arntzen C. J. Generation of transgenic banana (Musa acuminata) plants via Agrobacterium-mediated transformation. Nat. Biotechnol 13: 486–492; 1995.

    Article  CAS  Google Scholar 

  • Meyer P. Transcriptional transgene silencing and chromatin components. Plant Mol. Biol. 43: 221–234; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioaasays with tobacco tissue cultures. Physiol. Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Nagadhara D.; Ramesh S.; Pasalu I. C.; Rao Y. K.; Sarma N. P.; Reddy V. D.; Rao K. V. Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the white backed plant hopper (Sogatella furcifera). Theor. Appl. Genet. 109: 1399–1405; 2004.

    Article  CAS  PubMed  Google Scholar 

  • O’Kennedy M. M.; Burger J. T.; Botha F. C. Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep. 22: 684–690; 2004.

    Article  PubMed  Google Scholar 

  • Olhoft P. M.; Flagel L. E.; Donovan C. M.; Somers D. A. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216: 723–735; 2003.

    CAS  PubMed  Google Scholar 

  • Ozawa K. Establishment of a high efficiency Agrobacterium-mediated transformation system of rice (Oryza sativa L.). Plant Sci. 176: 522–527; 2009.

    Article  CAS  Google Scholar 

  • Pelczar P.; Kalck V.; Gomez D.; Hohn B. Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic T-DNA complexes in mammalian cells. EMBO Rep. 5: 632–637; 2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powell W. A.; Catranis C. M.; Maynard C. A. Synthetic antimicrobial peptide design. Mol. Plant Microbe Interact. 8: 792–794; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Rahman Z. A.; Seman Z. A.; Basirun N.; Julkifle A. L.; Zainal Z.; Subramaniam S. Preliminary investigations of Agrobacterium-mediated transformation in indica rice MR219 embryogenic callus using gusA gene. Afr. J. Biotechnol. 10: 7805–7813; 2011.

    Google Scholar 

  • Ramadevi R.; Rao K. V.; Reddy V. D. Antimicrobial peptides and production of disease resistant transgenic plants. In: Reddy V. D.; Rao P. N.; Rao K. V. (eds) Pests and pathogens: Management strategies CRC Press, pp 379–452;2010.

  • Ramesh S.; Nagadhara D.; Reddy V. D.; Rao K. V. Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects, using super-binary vectors of Agrobacterium tumefaciens. Plant Sci. 166: 1077–1085; 2004.

    Article  CAS  Google Scholar 

  • Rosenfield C.-L.; Samuelian S.; Vidal J. R.; Reisch B. I. Transgenic disease resistance in Vitis vinifera: potential use and screening of antimicrobial peptides. Am. J. Enol. Vitic. 61: 348–357; 2010.

    CAS  Google Scholar 

  • Sambrook J.; Russell D.W. In: Argentine J(ed) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA; 2001.

  • Sang X.; Jue D.; Yang L.; Bai X.; Chen M.; Yang Q. Genetic transformation of Brassica napus with MSI-99 m gene increases resistance in transgenic plants to Sclerotinia sclerotiorum. Mol. Plant Breed. 4: 247–253; 2013.

    Google Scholar 

  • Sastry J. G.; Sivaramakrishnan S.; Rao V. P.; Thakur R. P.; Singru R. S.; Gupta V. S.; Ranjekar P. K. Genetic basis of host-specificity in Sclerospora graminicola, the pearlmillet downy mildew pathogen. Indian Phytopathol. 54: 323–328; 2001.

    CAS  Google Scholar 

  • Scott M. G.; Hancock R. E. Cationic antimicrobial peptides and their multifunctional role in the immune system. Crit. Rev. Immunol. 20: 407–431; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K.; Takahashi M.; Goshima N.; Kawakami S.; Irifune K.; Morikawa H. Presence of an SAR-like sequence in junction regions between an introduced transgene and genomic DNA of cultured tobacco cells: its effect on transformation frequency. Plant J. 26: 375–384; 2001.

    Article  CAS  PubMed  Google Scholar 

  • Springer P. S.; McCombie W. R.; Sundaresan V.; Martienssen R. A. Gene trap tagging of PROLIFERA, an essential MCM2–3-5-like gene in Arabidopsis. Science 268: 877–880; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam K.; Subramanyam K.; Sailaja K. V.; Srinivasulu M.; Lakshmidevi K. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep. 30: 425–436; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Taylor M. G.; Vasil I. K. Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum (L.) R.Br.) embryos following microprojectile bombardment. Plant Cell Rep. 10: 120–125; 1991.

    Article  CAS  PubMed  Google Scholar 

  • Taylor M. G.; Vasil V.; Vasil I. K. Enhanced GUS gene expression in cereal/grass cell suspensions and immature embryos using the maize ubiquitin-based plasmid pAHC25. Plant Cell Rep. 12: 491–495; 1993.

    Article  CAS  PubMed  Google Scholar 

  • Thakur R. P. Pearl millet. In: Satish L.; Mawar R.; Rathore B. S. (eds) Disease management in arid land crops. Scientific Publishers, Jodhpur, pp 21–41; 2008.

    Google Scholar 

  • Thakur R. P.; Rai K. N.; Khairwal I. S.; Mahala R. S. Strategy for downy mildew resistance breeding in pearl millet in India. SAT eJournal 6: 1–11; 2008.

    Google Scholar 

  • Tingay S.; McElroy D.; Kalla R.; Fieg S.; Wang M.; Thornton S.; Brettell R. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369–1376; 1997.

    Article  CAS  Google Scholar 

  • Tytler E. M.; Anantharamaiah G. M.; Walker D. E.; Mishra V. K.; Palgunachari M. N.; Segrest J. P. Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry 34: 4393–4401; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H. D.; Reddy K. N.; Gowda C. L. L. Pearl millet germplasm at ICRISAT genebank—status and impact. SAT eJournal 3: 1–5; 2007.

    Google Scholar 

  • Vidal J. R.; Kikkert J. R.; Malnoy M. A.; Wallace P. G.; Barnard J.; Reisch B. I. Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Transgenic Res. 15: 69–82; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z.-C.; Liu P.; Saenkham P.; Kerr K.; Nester E. W. Transcriptome profiling and functional analysis of Agrobacterium tumefaciens reveals a general conserved response to acidic conditions (pH 5.5) and a complex acid-mediated signaling involved in Agrobacterium-plant interactions. J. Bacteriol. 190: 494–507; 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms and partial cDNA sequence of a precursor. Proc Natl Acad SciUSA 84: 5449–5453; 1987.

    Article  CAS  Google Scholar 

  • Zidani S.; Ferchichi A.; Chaieb M. Genomic DNA extraction method from pearl millet (Pennisetum glaucum) leaves. Afr. J. Biotechnol. 4: 862–866; 2005.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Department of Biotechnology, Government of India, New Delhi. The senior author acknowledges the Council of Scientific and Industrial Research for awarding the research fellowship. Critical reading of the manuscript by Prof. T. Papi Reddy and Prof. C. C. Giri is gratefully acknowledged. We also thank Mr. M. Suresh Reddy for his support. Thanks are due to Dr. R. P Thakur, Dr. Rajan Sharma, and Sri. V. Pandu Ranga Rao of ICRISAT, Hyderabad for their expert help in carrying out bioassays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Reddy.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramadevi, R., Rao, K.V. & Reddy, V.D. Agrobacterium tumefaciens-mediated genetic transformation and production of stable transgenic pearl millet (Pennisetum glaucum [L.] R. Br.). In Vitro Cell.Dev.Biol.-Plant 50, 392–400 (2014). https://doi.org/10.1007/s11627-013-9592-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-013-9592-y

Keywords

Navigation