Skip to main content
Log in

In vitro mycorrhization of the rubber tree Hevea brasiliensis Müll Arg

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

In vitro cultivation systems of arbuscular mycorrhizal fungi are useful tools to study the interaction between plants and their fungal symbiont, and also to develop new biotechnologies. Plantlets of the latex-producing species Hevea brasiliensis clone PB 260 were grown in a dense extraradical mycelium network of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833 developed from a mycelium donor plant (Medicago truncatula A17). The factors indole-3-butyric acid (IBA), 2-morpholineoethanesulfonic acid monohydrate (MES) buffer, and carbon dioxide (CO2) were tested on root development and colonization by the fungus. No colonization was observed in the presence of plantlets pre-treated with IBA. The highest levels of root colonization were obtained when plantlets were mycorrhized under a high CO2 concentration (1,000 μmol mol−1) with MES (10 mM) added to the growth medium. Widespread root colonization (with presence of arbuscules, intraradical mycelium, and spores/vesicles) was predominantly observed in newly produced roots. Therefore, it appears essential to improve root initiation and growth for improving in vitro mycorrhization of H. brasiliensis. We demonstrated the potential of the “mycelium donor plant” in vitro culture system to produce colonized H. brasiliensis plantlets before their transfer to ex vitro conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Becard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821–825

    Google Scholar 

  • Becard G, Piche Y (1989) Fungal growth stimulation by CO2 and root exudates in vesicular–arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    PubMed  CAS  Google Scholar 

  • Blanc G, Michaux-Ferrière N, Teisson C, Lardet L, Carron MP (1999) Effects of carbohydrate addition on the induction of somatic embryogenesis in Hevea brasiliensis. Plant Cell Tiss Organ Cult 59:103–112

    Article  CAS  Google Scholar 

  • Buddendorf-Joosten JMC, Woltering EJ (1994) Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul 15:1–16

    Article  CAS  Google Scholar 

  • Carron MP, Campagna S, Chaine C, Etienne H, Lardet L, Leconte A (1995) Somatic embryogenesis in rubber (Hevea brasiliensis Müll. Arg.). In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 117–136

  • Carron MP, Lardet L, Leconte A, Boko C, Dea BG, Keli J (2003) Field growth and rubber yield of Hevea brasiliensis (Muëll. -Arg.) from budded versus in vitro micropropagated plants from clone IRCA 18. Acta Hortic 616:283–293

  • Carron MP, Lardet L, Leconte A, Dea BG, Keli J, Granet F, Julien J, Teerawatanasuk K, Montoro P (2009) Field trials network emphasizes the improvement of growth and yield through micropropagation in rubber tree (Hevea brasiliensis, Muëll.-Arg.). Acta Hortic 812:485–492

    Google Scholar 

  • Compagnon P, D’Auzac J (1986) Le Caoutchouc naturel: Biologie, culture, production. G.-P. Maisonneuve et Larose, Paris

    Google Scholar 

  • Correa M, Martinez J, Montenegro J (1993) Análisis sobre la actividad de hongos formadores de micorrizas vesiculo arbusculares. In: Saldarriaga JG, van der Hammen T (eds) Aspectos ambientales para el ordenamiento territorial del occidente del departamento del Caquetá. IGAG, Bogotá, pp 698–736

    Google Scholar 

  • Cranenbrouck S, Voets L, Bivort C, Renard L, Stullu DG, Declerck S (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 341–348

    Chapter  Google Scholar 

  • de Klerk GJ, van der Krieken W, de Jong J (1999) Review the formation of adventitious roots: new concepts, new possibilities in vitro. Cell Dev Biol Plant 35:189–199

    Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Article  Google Scholar 

  • Delabarre MA, Serier JB (1995) L’Hévéa. Maisonneuve et Larose, Paris

    Google Scholar 

  • Díaz-Pérez JC, Sutter EG, Shackel KA (1995) Acclimatization and subsequent gas exchange, water relations, survival and growth of microcultured apple plantlets after transplanting them in soil. Physiol Plant 95:225–232

    Article  Google Scholar 

  • Díez J, Manjón JL, Kovács GM, Celestino C, Toribio M (2000) Mycorrhization of vitroplants raised from somatic embryos of cork oak (Quercus suber L.). Appl Soil Ecol 15:119–123

    Article  Google Scholar 

  • Douds DD Jr (1997) A procedure for the establishment of Glomus mosseae in dual culture with Ri T-DNA-transformed carrot roots. Mycorrhiza 7:57–61

    Article  CAS  Google Scholar 

  • Dupré de Boulois H, Voets L, Declerck S (2009) In vitro compartmented systems to study transport in arbuscular mycorrhizal symbiosis. In: Varma A, Kharkwal A (eds) Symbiotic fungi. Springer, Berlin, pp 101–122

    Chapter  Google Scholar 

  • Elmeskaoui A, Damont JP, Poulin MJ, Piche Y, Desjardin Y (1995) A tripartite culture system for endomycorrizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5:313–319

    Article  Google Scholar 

  • Fabbri A, Bartolini G, Lambardi M, Kailis S (2004) Olive propagation manual. Landlinks, Collingwood

    Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    Article  CAS  Google Scholar 

  • Fujiwara K, Kozai T (1995) Physical microenvironment and its effects. In: Aitken-Christie J, Kozai T, Smith MAL (eds) Automation and environmental control in plant tissue culture. Kluwer Academic Publishers, Dordrecht, pp 319–369

    Google Scholar 

  • Gallou A, De Jaeger N, Cranenbrouck S, Declerck S (2010) Fast track in vitro mycorrhization of potato plantlets allow studies on gene expression dynamics. Mycorrhiza 20:201–207

    Article  PubMed  CAS  Google Scholar 

  • Gryndler M, Hršelová H, Chvátalová I, Vosátkaand M (1998) In vitro proliferation of Glomus fistulosum intraradical hyphae from mycorrhizal root segments of maize. Mycol Res 102:1067–1073

    Article  CAS  Google Scholar 

  • Harbage JF, Stimart DP (1996) Effect of pH and 1H-indole-3-butyric acid (IBA) on rooting of apple microcuttings. J Am Soc Hortic Sci 121:1049–1053

    CAS  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    Article  CAS  Google Scholar 

  • Ikram A, Mahmud A, Ghani M, Ibrahim M, Zainal A (1992) Field nursery inoculation of Hevea brasiliensis Muell. Arg. seedling rootstock with vesicular–arbuscular mycorrhizal (VAM) fungi. Plant Soil 145:231–236

    Article  Google Scholar 

  • Ikram A, Mahmud AW, Othman H (1993) Growth response of Hevea brasiliensis seedlings rootstock to inoculation with vesicular–arbuscular mycorrhizal fungal species in steam-sterilised soil. J Nat Rubber Res 8:231–242

    Google Scholar 

  • Jeong RB, Fujiwara K, Kozai T (1995) Environmental control and photoautotropic micropropagation. In: Janick J (ed) Horticultural reviews, vol 17. Wiley, New York, pp 125–172

    Google Scholar 

  • Kaldorfa M, Ludwig-Muller J (2000) AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant 109:58–67

    Article  Google Scholar 

  • Karandashov V, Kuzovkina I, Hawkins HJ, George E (2000) Growth and sporulation of the arbuscular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots. Mycorrhiza 10:23–28

    Article  CAS  Google Scholar 

  • Koffi MC, de la Providencia IE, Elsen A, Declerck S (2009) Development of an in vitro culture system adapted to banana mycorrhization. Afr J Biotechnol 8:2750–2756

    Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2012) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza. doi:10.1007/s00572-012-0467-6

  • Kozai T, Kubota C (2001) Developing a photoautotrophic micropropagation system for woody plants. J Plant Res 114:525–537

    Article  Google Scholar 

  • Lardet L, Martin F, Dessailly F, Carron MP, Montoro P (2007) Effect of exogenous calcium on post-thaw growth recovery and subsequent plant regeneration of cryopreserved embryogenic calli of Hevea brasiliensis (Müll. Arg.). Plant Cell Rep 26:559–569

    Article  PubMed  CAS  Google Scholar 

  • Le Roux Y, Pagès L (1994) Développement et polymorphisme racinaires chez de jeunes semis d’hévéa (Hevea brasiliensis). Can J Bot 72:924–932

    Article  Google Scholar 

  • Le Roux Y, Pagès L (1996) Réaction géotropique des différents types de racines chez l’hévéa (Hevea brasiliensis). Can J Bot 74:1910–1918

    Article  PubMed  Google Scholar 

  • Liu WK, Yang QC (2008) Integration of mycorrhization and photoautotrophic micropropagation in vitro: feasibility analysis for mass production of mycorrhizal transplants and inoculants of arbuscular mycorrhizal fungi. Plant Cell Tiss Organ Cult 95:131–139

    Article  Google Scholar 

  • Louche-Tessandier D, Samson G, Hernández-Sebastià C, Chagvardieff P, Desjardins Y (1999) Importance of light and CO2 on the effects of endomycorrhizal colonization on growth and photosynthesis of potato plantlets (Solanum tuberosum) in an in vitro tripartite system. New Phytol 142:539–550

    Article  Google Scholar 

  • Martins A, Barroso J, Pais MS (1996) Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa mill. Mycorrhiza 6:265–270

    Article  Google Scholar 

  • McClelland MT, Smith MAL, Carothers ZB (1990) The effects of in vitro and ex vitro root initiation on subsequent microcutting root quality in three woody plants. Plant Cell Tiss Organ Cult 23:115–123

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swanand JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mosaleeyanon K, Cha-um S, Kirdmanee C (2004) Enhanced growth and photosynthesis of rain tree (Samanea saman Merr.) plantlets in vitro under a CO2-enriched condition with decreased sucrose concentrations in the medium. Sci Hortic 103:51–63

    Article  CAS  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:136–145

    Article  Google Scholar 

  • Nowak J (1998) Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants in vitro. Cell Dev Biol Plant 34:122–130

    Article  Google Scholar 

  • Padilla IMG, Carmona E, Westendorp N, Encina CL (2006) Micropropagation and effects of mycorrhiza and soil bacteria on acclimatization and development of lucumo (Pouteria lucuma R. and Pav.) var. La Molina in vitro. Cell Dev Biol Plant 42:193–196

    Article  CAS  Google Scholar 

  • Pawlowska TE, Douds DD Jr, Charvat I (1999) In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549–1556

    Article  Google Scholar 

  • Pospísilová J, Synková H, Haisel D, Semorádová S (2007) Acclimation of plantlets to ex vitro conditions: effects of air humidity, irradiance, CO2 concentration and abscisic acid (a review). Acta Hortic 748:29–38

    Google Scholar 

  • Schwob I, Ducher M, Coudret A (1999) Effects of climatic factors on native arbuscular mycorrhizae and Meloidogyne exigua in a Brazilian rubber tree (Hevea brasiliensis) plantation. Plant Pathol 48:19–25

    Article  Google Scholar 

  • Staddon PL, Fitter AH (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol Evol 13:455–458

    Article  PubMed  CAS  Google Scholar 

  • Staddon PL, Graves JD, Fitter AH (1998) Effect of enhanced atmospheric CO2 on mycorrhizal colonization by Glomus mosseae in Plantago lanceolata and Trifolium repens. New Phytol 139:571–580

    Article  Google Scholar 

  • Inc SS (2001) Statistica® Release 6. StatSoft Inc, Tulsa

    Google Scholar 

  • Tawaraya K, Takaya Y, Turjaman M, Tuah SJ, Limin SH, Tamai Y, Cha JY, Wagatsuma T, Osaki M (2003) Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. For Ecol Manage 182:381–386

    Article  Google Scholar 

  • Treseder KK, Allen MF (2000) Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen deposition. New Phytol 147:189–200

    Article  CAS  Google Scholar 

  • Vaysse L, Bonfils F, Thaler P, Sainte-Beuve J (2009) Chapter 9.5. Natural rubber. In: Höffer R (ed) Sustainable solutions for modern economies. The Royal Society of Chemistry, Cambridge, pp 339–367

    Chapter  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    PubMed  CAS  Google Scholar 

  • Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:346–356

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Pascal Montoro of the UMR Agap, Développement et Amélioration des Plantes, CIRAD-CP (France) for his technical advices. Sosa Rodríguez T. acknowledges the support of the “coopération au développement” Ph.D. Scholarship of the Université catholique de Louvain during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Declerck.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosa-Rodriguez, T., Dupré de Boulois, H., Granet, F. et al. In vitro mycorrhization of the rubber tree Hevea brasiliensis Müll Arg. In Vitro Cell.Dev.Biol.-Plant 49, 207–215 (2013). https://doi.org/10.1007/s11627-012-9485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-012-9485-5

Keywords

Navigation