Skip to main content
Log in

In vitro mycorrhization of pear (Pyrus communis)

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The Mycelium Donor Plant system (MDP) was adapted to study the time course of the colonization of Pyrus communis by Rhizophagus irregularis under in vitro conditions. Isolated germinated spores did not colonize pear roots. Inoculum composed of R. irregularis spores/mycelium associated with chicory root fragments was used to inoculate Medicago truncatula which became thereafter the MDP of pear plantlets. Typical intraradical structures (hyphae, arbuscules, spores/vesicles) and appressoria were observed in the pear roots. During acclimatization, the pear plants formed a densely branched root system. R. irregularis colonization not only altered the root architecture but also changed the nutrient composition of the acclimatized pear plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

MDP:

Mycelium Donor Plant

References

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54

    CAS  Google Scholar 

  • Al-Karaki GN, Al-Raddad A (1997) Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 7:83–88

    CAS  Google Scholar 

  • Al-Karaki GN, Clark RB (1998) Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276

    CAS  Google Scholar 

  • Azaizeh HA, Marschner H, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327

    Google Scholar 

  • Bagayoko M, Buerkert A, Lung G, Bationo A, Römheld V (2000) Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant Soil 218:103–116

    CAS  Google Scholar 

  • Baslam M, Garmendia I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515

    CAS  PubMed  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker JE, Munro M, Atkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    CAS  PubMed  Google Scholar 

  • Chiancone B, Casales FG, Mondello V, Torta L, Burruano S, Germanà MA (2013) Ex vitro mycorrhization of vitro-derived plantlets of ‘Carrizo’ Citrange [C. sinensis (L) Osb × P. trifoliata (L) Raf ]. Proc VIIIth Intern Symp In Vitro Culture Horticult Breed 1083:367–374

    Google Scholar 

  • Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck D (2005) Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas Springer, Heidelberg, pp 341–375

  • Cruz C, Green JJ, Watson CA, Wilson F, Martins-Loução MA (2004) Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14:177–184

    CAS  PubMed  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Google Scholar 

  • Díez J, Manjón JL, Kovács GM, Celestino C, Toribio M (2000) Mycorrhization of vitroplants raised from somatic embryos of cork oak (Quercus suber L). Appl Soil Ecol 15:119–123

    Google Scholar 

  • Dupré De Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934

    Google Scholar 

  • Elmeskaoui A, Damont JP, Poulin MJ, Piche Y, Desjardin Y (1995) A tripartite culture system for endomycorrizal inoculation of micropropagated strawberry plantlets in vitro. Mycorrhiza 5:313–319

    Google Scholar 

  • Fernández S, Declerck S, Fernández G, Ortega D (2017) Application of Mycelium Donor Plant (MDP) system on in vitro mycorrhization of potato. Cultivos Tropicales 38:31–38

    Google Scholar 

  • Food and Agricultural Organization of the United Nations (2016) Faostat

  • Gallou A, Mosquera HPL, Cranenbrouck S, Suárez JP, Declerck S (2011) Mycorrhiza induced resistance in potato plantlets challenged by Phytophthora infestans. Physiol Mol Plant P 76:20–26

    CAS  Google Scholar 

  • George E, Häussler KU, Vetterlein D, Gorgus E, Marschner H (1992) Water and nutrient translocation by hyphae of Glomus mosseae. Can J Bot 70:2130–2137

    Google Scholar 

  • Gyuricza V, Thiry Y, Wannijn J, Declerckm S, Dupré de Boulois H (2010) Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environ Microbiol 12:2180–2189

    CAS  PubMed  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hortic 108:105–120

    CAS  Google Scholar 

  • Hernández-Sebastia C, Piché Y, Desjardins Y (1999) Water relations of whole strawberry plantlets in vitro inoculated with Glomus intraradices in a tripartite culture system. Plant Sci 143:81–91

    Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    CAS  Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993) External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. New Phytol 124:61–68

    CAS  Google Scholar 

  • Koffi MC, de la Providencia IE, Elsen A, Declerck S (2009) Development of an in vitro culture system adapted to banana mycorrhization. Afr J Biotechnol Afr J Biotechnol 8

  • Koffi MC, Declerck S (2015) In vitro mycorrhization of banana (Musa acuminata) plantlets improves their growth during acclimatization. In Vitro Cel Dev Biol Plant 51:265–273

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Google Scholar 

  • Liu WK, Yang QC (2008) Integration of mycorrhization and photoautotrophic micropropagation in vitro: feasibility analysis for mass production of mycorrhizal transplants and inoculants of arbuscular mycorrhizal fungi. Plant Cell Tissue Organ Cult 95:131–139

    Google Scholar 

  • Lotfi M, Mars M, Werbrouck S (2019) Optimizing pear micropropagation and rooting with light emitting diodes and trans-cinnamic acid. Plant Growth Regul 88(2):173–180 1–8

    CAS  Google Scholar 

  • Louche-Tessandier D, Samson G, Hernandez Sebastia C, Chagvardieff P, Desjardins Y (1999) Importance of light and CO2 on the effects of endomycorrhizal colonization on growth and photosynthesis of potato plantlets (Solanum tuberosum) in an in vitro tripartite system. New Phytol 142:539–550

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martins A, Barroso J, Pais MS (1996) Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa mill. Mycorrhiza 6:265–270

    Google Scholar 

  • Mohammad MJ, Malkawi HI, Shibli R (2003) Effects of arbuscular mycorrhizal fungi and phosphorus fertilization on growth and nutrient uptake of barley grown on soils with different levels of salts. J Plant Nutr 26:125–137

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nowak J (1998) Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol Plant Plant 34:122–130

    Google Scholar 

  • Oláh B, Brière C, Bécard G, Dénarié J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    PubMed  Google Scholar 

  • Orfanoudakis M, Wheeler CT, Hooker JE (2010) Both the arbuscular mycorrhizal fungus Gigaspora rosea and Frankia increase root system branching and reduce root hair frequency in Alnus glutinosa. Mycorrhiza 20:117–126

    PubMed  Google Scholar 

  • Ortas I, Akpinar C, Demirbas A (2015) Effect of mycorrhizal species on growth and nutrient uptake by seedlings of Citrus (Citrus sinensis) under three soil growth conditions. Curr Hort 3:61–64

    Google Scholar 

  • Rapparini F, Baraldi R, Bertazza G (1996) Growth and carbohydrate status of Pyrus communis L plantlets inoculated with Glomus sp. Agronomie 16:653–661

    Google Scholar 

  • Ruiz-Lozano JM, Azcón R (2000) Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity. Mycorrhiza 10:137–143

    CAS  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L). Ann Bot 68:135–141

    Google Scholar 

  • Shokri S, Maadi B (2009) Effects of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. Agron J 8:79–83

    CAS  Google Scholar 

  • Sosa-Rodriguez T, de Boulois HD, Granet F, Gaurel S, Melgarejo LM, Carron MP, Declerck S (2013) In vitro mycorrhization of the rubber tree Hevea brasiliensis Müll Arg. In Vitro Cell Dev Biol Plant 49:207–215

    Google Scholar 

  • Tauler M, Baraza E (2015) Improving the acclimatization and establishment of Arundo donax L plantlets, a promising energy crop, using a mycorrhiza-based biofertilizer. Ind Crop Prod 66:299–304

    Google Scholar 

  • Tisserant B (1992) L’endomycorhization VA des ligneux: architecture racinaire et activité fonctionnelle de la symbiose endomycorhizienne. Doctoral Dissertation, Dijon

    Google Scholar 

  • Tisserant B, Gianinazzi S, Gianinazzi-Pearson V (1996) Relationships between lateral root order, arbuscular mycorrhiza development, and the physiological state of the symbiotic fungus in Platanus acerifolia. Can J Bot 74:1947–1955

    Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed Central  Google Scholar 

  • Voets L, de la Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S (2009) Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19:347–356

    PubMed  Google Scholar 

  • Voets L, Dupré de Boulois H, Renard L, Strullu DG, Declerck S (2005) Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett 248:111–118

    CAS  PubMed  Google Scholar 

  • Weremijewicz J, Janos DP (2013) Common mycorrhizal networks amplify size inequality in Andropogon gerardii monocultures. New Phytol 198:203–213

    CAS  Google Scholar 

  • Yao Q, Wang LR, Zhu HH, Chen JZ (2009) Effect of arbuscular mycorrhizal fungal inoculation on root system architecture of trifoliate orange (Poncirus trifoliata L Raf) seedlings. Sci Hortic 121:458–461

    Google Scholar 

Download references

Acknowledgments

We wish to thank the Tunisian Ministry of Higher Education and Scientific Research for awarding a scholarship to Mariem LOTFI for a study stay at GENT University (Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefaan Werbrouck.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(JPG 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, M., Fernandez, K., Vermeir, P. et al. In vitro mycorrhization of pear (Pyrus communis). Mycorrhiza 29, 607–614 (2019). https://doi.org/10.1007/s00572-019-00919-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00919-w

Keywords

Navigation