Skip to main content
Log in

Morphological and physiological characterization of two new pineapple somaclones derived from in vitro culture

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

We previously reported a partial agricultural and amplified fragment length polymorphism (AFLP) characterization of two new pineapple somaclones (P3R5 and Dwarf) derived from in vitro culture of the donor cv. Red Spanish Pinar. Both somaclonal variants showed different AFLP banding patterns compared to the donor cultivar, although they were separated by less than 0.09 U of genetic distance. The present report shows data of various indicators of morphology and physiology of P3R5 and Dwarf D leaves. The stoma diameter, number of stomata per square millimiter, diameter of leaf vascular tissue, thickness of the leaf aquiferous parenchyma, and thickness of the leaf photosynthetic parenchyma were measured. The photosynthetic rate, the transpiration rate, the water use efficiency, the internal leaf CO2 concentration, and the chlorophyll pigment contents were recorded as well. Between the somaclonal variant P3R5 and the donor genotype, statistically significant differences were recorded in all indicators with the exception of the stoma diameter and the photosynthetic rate. Comparing the somaclonal variant Dwarf and the cv. Red Spanish Pinar (donor), statistically significant differences were also recorded in all parameters except in the stoma diameter and in the transpiration rate. This investigation was performed to demonstrate that small changes in the pineapple DNA may result in relevant phenotypic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aversano R.; Savarese; De Nova J. M.; Frusciante L.; Punzo M.; Carputo D. Genetic stability at nuclear and plastid DNA level in regenerated plants of Solanum species and hybrids. Euphytica 165: 353–361; 2009. doi:10.1007/s10681-008-9797-z.

    Article  CAS  Google Scholar 

  • Barandalla L.; Ritter E.; Ruiz De Galarreta J. I. Oryzalin treatment of potato diploids yields tetraploid and chimeric plants from which euploids could be derived by callus induction. Potato Res 10: 143–154; 2006.

    Google Scholar 

  • Bhatia P.; Ashwath N.; Senaratna T.; Krauss S. Genetic analysis of cotyledon-derived regenerants of tomato using AFLP markers. Curr Sci 88: 280–284; 2005.

    Google Scholar 

  • Botella J. R.; Fairbairn D. J. Present and future potential of pineapple biotechnology. Acta Hort 666: 23–28; 2005.

    Google Scholar 

  • Bouman H.; De Klerk G. J. Measurement of the extent of somaclonal variation in begonia plants regenerated under various conditions. Comparison of three assays. Theor Appl Genet 102: 111–117; 2001. doi:10.1007/s001220051625.

    Article  CAS  Google Scholar 

  • Brown P. T. H.; Lange F. D.; Kranz E.; Lorz H. Analysis of single protoplasts and regenerated plants by PCR and RAPD technology. Mol Gen Genet 237: 311–317; 1993.

    PubMed  CAS  Google Scholar 

  • Cabot C.; Lacoevilhe J. C. A genetic hybridization programme for improving pineapple quality. Acta Hort 275: 395–400; 1990.

    Google Scholar 

  • Cardoza V.; Stewart N. C. Brassica biotechnology: progress in cellular and molecular biology. In Vitro Cell Dev Biol-Plant 40: 542–551; 2004.

    Article  CAS  Google Scholar 

  • Carlier J. D.; Coppens d’Eeckenbrugge G.; Leitão J. M. Pineapple. In: Kole C. (ed) Genome mapping and molecular breeding in plants, vol. 4. Fruits and nuts. Springer-Verlag Berlin & Heidelberg, Germany, pp 331–342; 2007.

    Google Scholar 

  • Castillo N. F.; Bassil N. V.; Wada S.; Reed B. M. Genetic stability of criopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol-Plant 46: 246–256; 2010.

    Article  Google Scholar 

  • Chen J.; Henny R. J.; Devanand P. S.; Chao C. T. AFLP analysis of nephthytis (Syngonium podophyllum Schott) selected from somaclonal variants. Plant Cell Rep 24: 743–749; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Dewald M. G.; Moore G. A.; Sherman W. B.; Evans M. H. Production of pineapple plants in vitro. Plant Cell Rep 7: 535–537; 1988.

    Article  Google Scholar 

  • Espinosa P.; Lorenzo J. C.; Iglesias A.; Yabor L.; Menéndez E.; Borroto J.; Hernández L.; Arencibia A. D. Production of pineapple transgenic plants assisted by temporary immersion bioreactors. Plant Cell Rep 21: 136–140; 2002.

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAOSTAT) (2010) FAO statistic division. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567. Accessed 31August

  • Feuser S.; Kelen M.; Daquinta M.; Onodari R. Genotypic fidelity of micropropagated pineapple (Ananas comosus) plantlets assessed by isozyme and RAPDs. Plant Cell Tiss Org Cult 72: 221–227; 2003.

    Article  CAS  Google Scholar 

  • Fourré J. L.; Berger P.; Niquet L.; André P. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet 94: 159–169; 1997. doi:10.1007/s001220050395.

    Article  Google Scholar 

  • García-Sánchez F.; Syvertsen J. P.; Gimeno V.; Botía P.; Perez-Perez J. G. Responses to flooding and drought stress by two citrus rootstock seedlings with different water-use efficiency. Physiol Plant 130: 532–542; 2007.

    Article  Google Scholar 

  • Guo W. L.; Gong L.; Ding Z. F.; Li Y. D.; Li F. X.; Zhao S. P.; Liu B. Genomic instability in phenotypically normal regenerants of medicinal plant Codonopsis lanceolata Benth. et Hook. as revealed by ISSR and RAPD markers. Plant Cell Rep 25: 896–906; 2006. doi:10.1007/s00299-006-0131-8.

    Article  PubMed  CAS  Google Scholar 

  • Jain S. M. Tissue culture-derived variation in crop improvement. Euphytica 118: 153–166; 2001.

    Article  CAS  Google Scholar 

  • Johansen D. A. Plant microtechnique. McGraw-Hill Books, New York, NY, USA, p 528; 1940.

    Google Scholar 

  • Larkin P. J.; Scowcroft W. R. Somaclonal variation—a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60: 197–214; 1981.

    Article  Google Scholar 

  • Li R.; Qu R.; Bruneau A. H.; Livingston D. P. Selection for freezing tolerance in St. Augustine grass through somaclonal variation and germplasm evaluation. Plant Breed 129: 417–421; 2010.

    Article  Google Scholar 

  • Lii J. L.; Rosa-Márquez E.; Lizard E. Smooth leaf (spineless) Red Spanish pineapple (Ananas comosus) propagated in vitro. J Agric Univ P R 73: 15–17; 1989.

    Google Scholar 

  • Martins M.; Sarmento D.; Oliveira M. M. Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Rep 23: 492–496; 2004. doi:10.1007/s00299-004-0870-3.

    Article  PubMed  CAS  Google Scholar 

  • Palombi M. A.; Lombardo B.; Caboni E. In vitro regeneration of wild pear (Pyrus pyraster Burgsd) clones tolerant to Fe-chlorosis and somaclonal variation analysis by RAPD markers. Plant Cell Rep 26: 489–496; 2007. doi:10.1007/s00299-006-0256-9.

    Article  PubMed  CAS  Google Scholar 

  • Pérez G.; Yanez E.; Isidrón M.; Lorenzo J. C. Phenotypic and AFLP characterization of two new pineapple somaclones derived from in vitro culture. Plant Cell Tiss Org Cult 96: 113–116; 2009.

    Article  Google Scholar 

  • Piccioni E.; Barcaccia G.; Falcinelli M.; Standardi A. Estimating somaclonal variation in axillary branching propagation and indirect somatic embryogenesis by RAPD fingerprinting. Int J Plant Sci 158: 556–562; 1997. doi:10.1086/297467.

    Article  CAS  Google Scholar 

  • Porra R. J. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73: 149–156; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Prado M. J.; González M. V.; Romo S.; Herrera M. T. Adventitious plant regeneration on leaf explants from adult male kiwifruit and AFLP analysis of genetic variation. Plant Cell, Tissue Organ Cult 88: 1–10; 2007.

    Article  Google Scholar 

  • Price A.; Cairns J.; Horton P.; Jones H. G.; Griffiths H. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot 53: 989–1004; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Py C.; Lacoeuilhe J. J.; Teisson C. The pineapple: cultivation and uses. Editions GP. Maisonneuve & Larose, Paris, France; 1987.

    Google Scholar 

  • Qing-Ming L.; Bin-Bin L.; Yang W.; Zhi-Rong Z. Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings. J Integr Plant Biol 50: 1307–1317; 2008.

    Article  Google Scholar 

  • Rival A.; Bertrand L.; Beale T.; Combes M. C.; Touslot P.; Leshermes P. Suitability of RAPD analysis for detection of somaclonal variation in oil palm (Elaeis guineensis Jacq.). Plant Breed 117: 73–76; 1998. doi:10.1111/j.1439-0523.1998.tb01451.x.

    Article  Google Scholar 

  • Sharma S. K.; Bryan G. J.; WinWeld M. O.; Millam S. Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226: 1449–1458; 2007. doi:10.1007/s00425-007-0583-2.

    Article  PubMed  CAS  Google Scholar 

  • Smulders M. J.; Rus-Kortekaas W.; Gilissen L. J. W. Natural variation in patterns of polysomaty among individual tomato plants and their regenerated progeny. Plant Sci 106: 129–139; 1995. doi:10.1016/0168-9452(95)04082-6.

    Article  CAS  Google Scholar 

  • Sripaoraya S.; Keawsompong S.; Insupa P.; Davey M. R.; Power J. B.; Srinives P. Evaluation of transgene stability, gene expression and herbicide tolerance of genetically modified pineapple under field conditions. Acta Hort 702: 37–40; 2006.

    CAS  Google Scholar 

  • Sripaoraya S.; Marchant R.; Power J. B.; Davey M. R. Herbicide-tolerant transgenic pineapple (Ananas comosus) produced by microprojectile bombardment. Ann Bot 88: 597–603; 2001.

    Article  CAS  Google Scholar 

  • Wakasa K. (1977) Use of tissue culture for propagation and mutant induction in Ananas comosus. Nat Inst Agr Sc Annual Report. Tokyo, Japan

  • Wakasa K. (1989) Pineapple (Ananas comosus L. Merr). In: Biotechnology in agriculture and forestry. Bajaj YPS (ed). Springer Verlag, Berlin, Germany

  • Yabor L.; Valle B.; Carvajal C.; Aragón C.; Hernández M.; González J.; Daquinta M.; Arencibia A.; Lorenzo J. C. Characterization of a field-grown transgenic pineapple clone containing the genes chitinase, AP24, and bar. In Vitro Cell Dev Biol-Plant; 2009. doi:10.1007/s11627-009-9245-3.

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Cuban Ministry for Science, Technology, and the Environment. We are grateful to Julia Martínez, Alitza Iglesias, and Mayda Arzola for their excellent technical assistance. We thank Taletha Laudat for the professional language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Pérez.

Additional information

Editor: D. T. Tomes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, G., Mbogholi, A., Sagarra, F. et al. Morphological and physiological characterization of two new pineapple somaclones derived from in vitro culture. In Vitro Cell.Dev.Biol.-Plant 47, 428–433 (2011). https://doi.org/10.1007/s11627-011-9342-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9342-y

Keywords

Navigation