Skip to main content
Log in

Somatic embryogenesis and plant regeneration in centipedegrass (Eremochloa ophiuroides [Munro] Hack.)

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Centipedegrass (Eremochloa ophiuroides [Munro] Hack.) is an important warm-season turfgrass and pasture grass. To explore the potential use of biotechnical tools in breeding of centipedegrass, we established an efficient plant regeneration system for this species. Four basal media and 24 combinations of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BAP) were examined for their effects on callus induction from mature seed explants. Twenty combinations of naphthaleneacetic acid (NAA) and BAP were tested for their effect on plant regeneration. Results indicated that Murashige and Skoog basal medium supplemented with 4.5 mg l−1 2,4-D and 1 mg l−1 BAP was the best medium for callus induction, while the combination of 2 mg l−1 BAP and 1 mg l−1 NAA induced the highest rate of regeneration and development of shoots and roots. This work provides a basis for the breeding of centipedegrass through somaclonal variation and genetic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.

Similar content being viewed by others

References

  • Bhaskaran S.; Smith R. H. Regeneration in cereal tissue culture: a review. Crop Sci. 30: 1328–1336; 1990.

    CAS  Google Scholar 

  • Cao M. X.; Huang J. Q.; He Y. L.; Liu S. J.; Wang C. L.; Jiang W. Z.; Wei Z. M. Transformation of recalcitrant turfgrass cultivars through improvement of tissue culture and selection regime. Plant Cell Tissue Org. Cult. 85: 307–316; 2006.

    Article  Google Scholar 

  • Chaudhury A.; Qu R. Somatic embryogenesis and plant regeneration of turf type bermudagrass: effect of 6-benzyladenin in callus induction medium. Plant Cell Tissue Org. Cult. 60: 113–120; 2000.

    Article  CAS  Google Scholar 

  • Chu C. C.; Wang C. C.; Sun C. S.; Hsu C.; Yin K. C.; Chu C. Y.; Bi F. Y. Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 18: 659–668; 1975.

    Google Scholar 

  • Duble R. L. Turfgrasses—their management and use in the southern zone. 2nd ed. Texas A & M University Press, College Station, TX; 1996.

    Google Scholar 

  • Gamborg O. L.; Miller R. A.; Ojima K. Nutrient requirement suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Griffin J. D.; Dibble M. S. High-frequency plant regeneration from seed-derived callus cultures of Kentucky bluegrass (Poa pratensis L.). Plant Cell Rep. 14: 721–724; 1995.

    Article  CAS  Google Scholar 

  • Hanna W. W. Centipedegrass—diversity and vulnerability. Crop Sci. 35: 332–334; 1995.

    Google Scholar 

  • Hanna W. W.; Burton W. G. Cytology, reproductive behavior and fertility characteristics of centipedegrass. Crop Sci. 18: 835–837; 1978.

    Google Scholar 

  • Hanna W. W.; Liu J. Centipedegrass (Eremochloa ophiuroides). In: Casler M. D.; Duncan R. R. (eds) Turfgrass biology, genetics and breeding. Wiley, New York, pp 309–330; 2003.

    Google Scholar 

  • Hook J. E.; Hanna W. W.; Maw B. W. Quality and growth response of centipedegrass to extended drought. Agron. J. 84: 606–612; 1992.

    Google Scholar 

  • Islam M. A.; Hirata M. Centipedegrass (Eremochloa ophiuroides (Munro) Hack.): Growth behavior and multipurpose usages. Grassl. Sci. 51: 183–190; 2005.

    Article  Google Scholar 

  • Johnson B. J.; Carrow R. N. Influence of soil pH and fertility programs on centipedegrass. Agron. J. 84: 21–26; 1992.

    Google Scholar 

  • Krans J. V.; Blanche F. C. B. Tissue culture of centipedegrass. In: Lemaire F. (ed) Proceedings of the International Trufgrass Research Conference. Turfgrass Society and INRA, Paris, pp 159–164; 1985.

    Google Scholar 

  • Li R.; Bruneau A. H.; Qu R. Improved plant regeneration and in vitro somatic embryogenesis of St Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze]. Plant Breed. 125: 52–56; 2006.

    Article  CAS  Google Scholar 

  • Lu S.; Wang Z.; Peng X.; Guo Z.; Zhang G.; Han L. And efficient callus suspension culture system for triploid bermudagrass (Cynodon transvaalensis × C. dactylon) and somaclonal variations. Plant Cell Tissue Org. Cult. 87: 77–84; 2006.

    Article  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Wang Z. Y.; Bell J.; Hopkins A. Establishment of a plant regeneration system for wheatgrasses (Thinopyrum, Agronpyron and Pascopyrum). Plant Cell Tissue Org Cult. 73: 265–273; 2003.

    Article  CAS  Google Scholar 

  • Wang Z. Y.; Hopkins A.; Mian R. Forage and turf grass biotechnology. Crit. Rev. Plant Sci. 20: 573–619; 2001.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by grants from the Natural Science Foundation of China (30671478) and the Guangdong Provincial Natural Science Foundation (06025818).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenfei Guo.

Additional information

Editor: Nigel Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Yang, J., Lu, S. et al. Somatic embryogenesis and plant regeneration in centipedegrass (Eremochloa ophiuroides [Munro] Hack.). In Vitro Cell.Dev.Biol.-Plant 44, 100–104 (2008). https://doi.org/10.1007/s11627-008-9115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-008-9115-4

Keywords

Navigation