Skip to main content
Log in

Regeneration of zoysia grass (Zoysia matrella L. Merr.) cv. Konhee from young inflorescences and stem nodes

  • Developmental Biology/Morphogenesis
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

We have optimized conditions for efficient regeneration of the vegetatively propagated zoysia grass (Zoysia matrella L. Merr) cultivar “Konhee”. Two explants, young inflorescences, and stem nodes, were used and they displayed different responses to combinations and concentrations of plant growth regulators in callusing, embryogenic callus formation, and regeneration. The highest callus initiation rate from young inflorescences was obtained on medium supplemented with 4.5 to 9.0 μM 2,4-dicholorophenoxy acetic acid (2,4-D) and 0.44 μM 6-benzyl amino purine (BA). When the BA concentration was lowered to 0.044 μM, the highest percent embryogenic callus induction from young inflorescences was achieved. The highest callus initiation rate from stem nodes was obtained, when young inflorescences were cultured on MS medium supplemented with 4.5 to 9.0 μM 2,4-D, 0.44 μM BA, and 0.037 μM abscisic acid (ABA). But embryogenic callus formation from the stem node was highest in the presence of 4.5 to 9.0 μM 2,4-D, 0.044 μM BA, and 0.037 μM ABA. Addition of ABA significantly increased embryogenic callus formation from stem nodes, but not from young inflorescences. Regeneration percentage was variable in response to BA level, and inclusion of α-naphthalene acetic acid (NAA) and gibberellic acid (GA3) further increased the regeneration percentage. The highest regeneration percentages obtained from the young inflorescences and stem nodes were 82% and 67%, respectively. This is the first report showing that plants can be regenerated from young inflorescences and stem nodes of vegetatively propagated zoysia grass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2

Similar content being viewed by others

References

  • Ahn, B. J.; Hung, F. H.; King, J. W. Plant regeneration through somatic embryogenesis in common bermudagrass tissue culture. Crop Sci. 25:1107–1109; 1985.

    Article  Google Scholar 

  • Ahn, B. J.; Huang, F. H.; King, J. W. Regeneration of bermudagrass cultivars and evidence of somatic embryogenesis. Crop Sci. 27:594–597; 1987.

    Article  CAS  Google Scholar 

  • Al-Khayari, J. M.; Huang, F. H.; Thomson, L. F.; King, J. W. Plant regeneration of zoysia grass from embryo-derived callus. Crop Sci. 29:123–1324; 1989.

    Google Scholar 

  • Altpeter, F.; Posselt, U. K. Improved plant regeneration from cell suspensions of commercial cultivars, breeding and inbred lines of perennial ryegrass (Lolium perenne). J. Plant Physiol. 156:790–796; 2000.

    CAS  Google Scholar 

  • Artunduaga, I. R.; Taliaferro, C. M.; Johnson, B. L. Effects of auxin concentration on induction and growth of embryogenic callus from young inflorescence explants of Old World bluestem (Bothriochloa spp.) and bermuda (Cynodon spp.) grasses. Plant Cell, Tissue Org. Cult. 12:13–19; 1988.

    Article  CAS  Google Scholar 

  • Artunduaga, I. R.; Taliaferro, C. M.; Johnson, B. L. Induction and growth of callus from immature inflorescences of ‘Zebra’ bermudagrass as affected by casein hydrolysate and 2,4-D concentration. In Vitro Cell. Dev. Biol. 25:753–756; 1989.

    Article  CAS  Google Scholar 

  • Asano, Y. Somatic embryogenesis and protoplast culture in Japanese lawngrass (Zoysia japonica). Plant Cell Rep. 8:141–143; 1989.

    Article  Google Scholar 

  • Bai, Y.; Qu, R. Factors influencing tissue culture responses of mature seeds and immature embryos in turf-type tall fescue (Festuca arundinacea Schreb.). Plant Breed. 120:239–242; 2001.

    Article  Google Scholar 

  • Beard, James B. B. Turfgrass: science and culture, 1st edition. Prentice-Hall, Inc. Englewood cliffs, New Jersey; Prentice-Hall, Inc. pp143–151; 1978.

  • Bhaskaran, S.; Smith, R. H. Regeneration in cereal tissue culture: a review. Crop Sci. 30:1328–1336; 1990.

    Article  CAS  Google Scholar 

  • Bradley, D. E.; Bruneau, A. H.; Qu, R. Effects of cultivar, explant treatment, and medium supplements on callus induction and plantlet regeneration in perennial ryegrass. Int. Turfgrass Soc. Res. J. 9:152–156; 2001.

    Google Scholar 

  • Chai, M. L.; Lee, J. M.; Kim, D. H. High efficiency of plant regeneration from seed derived callus of zoysia grass cv. Zenith. Korean Journal of Turfgrass Science 12:195–202; 1998.

    Google Scholar 

  • Cho, M. J.; Ha, C. D.; Lemaux, P. G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. Plant Cell Rep. 19:1084–1089; 2000.

    Article  CAS  Google Scholar 

  • Chaudhury, A.; Qu, R. Somatic embryogenesis and plant regeneration of turf-type bermudagrass: effect of 6-benzyladenine in callus induction medium. Plant Cell, Tissue Organ Cult. 60:113–120; 2000.

    Article  CAS  Google Scholar 

  • Dibble, M. S.; Griffin, J. D. Stable-transformed Kentucky bluegrass plants expressing GUS or BAR. American Society of Agronomy Annual Meeting (Abstract) 1998:143–144; 1998.

  • Duncan, D. B. Multiple range and multiple F tests. Biometrics 11:1–42; 1955.

    Article  Google Scholar 

  • Goldman, J. J.; Hanna, W. W.; Fleming, G. H.; Ozias-Akins, P. Ploidy variation among herbicide-resistant bermudagrass plants of cv. TifEagle transformed with bar gene. Plant Cell Rep. 22:553–560; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, J. D.; Dibble, M. S. High-frequency plant regeneration from seed-derived callus cultures of Kentucky bluegrass (Poa pratensis L.). Plant Cell Rep. 14:721–724; 1995.

    Article  CAS  Google Scholar 

  • Hartman, C. L.; Lee, L.; Day, P. R.; Tumer, N. E. Herbicide resistant turfgrass (Agrostis palustris Huds.) by biolistic transformation. Biotechnology 12:919–923; 1994.

    Google Scholar 

  • Inokuma, C.; Sugira, K.; Imaizumi, N.; Cho, C. Transgenic Japanese lawngrass (Zoysia japonica Steud.) plants regenerated from protoplasts. Plant Cell Rep. 17:334–338; 1998.

    Article  CAS  Google Scholar 

  • Kim, D. H.; Lee, J. P.; Kim, J. B.; Mo, S. Y. Development of narrow leaf cultivar ‘Konhee’ in zoysia grass. Kor. J. Turfgrass Sci. 13(3):147–152; 2000.

    Google Scholar 

  • Koichi, T.; Chang, H. B.; Kang, J. G.; Young, P. L.; Taiji, A.; Key, Z. R.; Soon, P. S.; Yeon, H. L. Production of herbicide-tolerant zoysia grass by Agrobacterium-mediated transformation. Mol. Cell 16:19–27; 2003.

    Google Scholar 

  • Li, L.; Qu, R. In vitro somatic embryogenesis in turf-type bermudagrass: roles of abscisic acid and gibbrellic acid, and occurrence of secondary somatic embryogenesis. Plant Breed. 121:155–158; 2002.

    Article  CAS  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Spangenberg, G.; Wang, Z. Y.; Wu, X.; Nagel, J.; Potrykus, I. Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. Plant Sci. 108:209–217; 1995.

    Article  CAS  Google Scholar 

  • Van der Valk, P.; Ruis, F.; Tettelaar-Schrier, A. M.; van de Velde. Optimizing plant regeneration from seed-derived callus cultures of Kentucky bluegrass. The effect of benzyladenine. Plant Cell, Tissue Org. Cult. 40:101–103; 1995.

    Article  Google Scholar 

  • Wang, Y.; Browning, M.; Ruemmele, B. A.; Chandlee, J. M.; Kausch, A. P.; Jackson, N. Glufosinate reduces fungal disease in transgenic glufosinate-resistant bentgrasses (Agrostis spp.). Weed Sci. 51:130–137; 2003.

    Article  CAS  Google Scholar 

  • Wang, Z. Y.; Takamizo, T.; Iglesias, V. A.; Osusky, M.; Nagel, J.; Potrykus, I.; Spangenberg, G. Transgenic plants of tall fescue (Festuca arundinacea schreb.) obtained by direct gene transfer to protoplasts. Biotechnology 10:691–896; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Zhong, H.; Srinivasan, C.; Sticklen, M. B. Plant regeneration via somatic embryogenesis in creeping bentgrass (Agrostis palustrisHuds.). Plant Cell Rep. 10:453–456; 1991.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This paper was supported by the Konkuk University in 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hwan Kim.

Additional information

Editor: C.L. Armstrong

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhandapani, M., Hong, SB., Aswath, C.R. et al. Regeneration of zoysia grass (Zoysia matrella L. Merr.) cv. Konhee from young inflorescences and stem nodes. In Vitro Cell.Dev.Biol.-Plant 44, 8–13 (2008). https://doi.org/10.1007/s11627-006-9021-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-006-9021-6

Keywords

Navigation