Skip to main content
Log in

Special symposium: In vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance?

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Free radicals have an important role in the metabolism and development of aerobic organisms; however, their uncontrolled production leads to oxidative stress. This paper explores the possibility that free radical mediated stress has a role in tissue culture recalcitrance. In the context of this paper, recalcitrance is considered to be the inabilit of plant tissue cultures to respond to culture manipulations; in its broadest terms, this study also concerns the time-related decline (i.e. in vitro aging) and loss of morphogenetic competence and totipotent capacity. Studies on a diverse range of in vitro plant systems have shown that tissue cultures produce free radicals, lipid peroxides and toxic, aldehydic lipid peroxidation products. Levels of these compounds vary in response to different tissue culture manipulations, but their production is enhanced during dedifferentation and antioxidant profiles also vary throughout different phases of culture. A hypothesis is presented which suggests that tissue culture manipulations cause major metabolic and developmental changes, some of which may predispose in vitro cultures to increased free radical formation. If antioxidant protection is compromised, oxidative stress ensues and free radicals and their reaction products react with macromolecules such as DNA, proteins and enzymes, causing cellular dysfuction and as a result, the cultures become recalcitrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, L. K.; Benson, E. E.; Staines, H. J.; Bremner, D. H.; Millam, S.; Deighton, N.: Effects of lipid peroxidation products 4-hydroxy-2-nonenal and malondialdehyde on the proliferation and morphogenetic development of in vitro plant cells. J. Plant Physiol. 155:376–386; 1999.

    CAS  Google Scholar 

  • Badiani, M.; D'Annibale, A.; Paolacci, A. R.; Fusari, A.. Modifying the expression of antioxidant systems in transgenic plants. Agro-Food Ind. Hi-Tech. March–April: 21–26; 1996.

    Google Scholar 

  • Bailey, E.; Deighton, N.; Clulow, S. A.; Goodman, B. A.; Benson E. E.: Changes in free radical profiles during the callogenesis of responsive and recalcitrant potato genotypes. Proc. R. Soc. Edinburgh, Sect. B 102:243–246; 1994.

    Google Scholar 

  • Benson, E. E.: Free radical damage in stored plant germplasm. Rome, Italy: IBPGR; 1990.

    Google Scholar 

  • Benson, E. E.. Free radicals in stressed and ageing plant tissue cultures. In: Durzan, D. J.; Rodriguez, R.; Sanchez Tamés, R., eds. Plant aging: basic and applied approaches. New York: Plenum Press: 1991; 269–276.

    Google Scholar 

  • Benson, E. E.; Lynch, P. T.; Jones, J., The detection of lipid peroxidation products in cryoprotected and frozen rice cells: consequences for post-thaw survival. Plant. Sci. 85: 107–114; 1992a.

    Article  CAS  Google Scholar 

  • Benson, E. E.; Lynch, P. T.; Jones, J.: Variation in free radical-mediated damage in rice cell suspensions with different embryogenic potentials. Planta 188:296–305; 1992b.

    Article  CAS  Google Scholar 

  • Benson, E. E.; Magill, W. J.; Deighton, N.; Bremner, D. H.; Adams, L. K. Cellular mechanisms in vitro: studies of free radical-generated lipid peroxidation products in plant tissue culture systems. In Vitro Cell. Dev. Biol.-Plant 33:47A; 1997a.

    Google Scholar 

  • Benson, E. E.; Magill, W. J.; Bremner, D. H.. Free radical processes in plant tissue cultures: implications for plant biotechnology programmes. Phyton 37:31–38; 1997b.

    CAS  Google Scholar 

  • Benson, E. E.; Roubelakis-Angelakis, K. A.. Fluorescent lipid peroxidation products and antioxidant enzymes in tissue cultures of Vitis vinifera L. Plant Sci. 84:83–90; 1992.

    Article  CAS  Google Scholar 

  • Benson, E. E.; Roubelakis-Angelakis, K. A., Oxidative stress in recalcitrant tissue cultures of grapevine. Free Rad. Biol. Med. 16:355–362; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Benson, E. E.; Withers, L. A. Gas chromatographic analysis of volatile hydrocarbon production by cryopreserved plant tissue cultures: A non-destructive method for assessing stability. Cryo-Lett. 8:35–46; 1987.

    CAS  Google Scholar 

  • In: Bergmeyer, Y.; Grassle, M., eds. Methods of enzymatic analysis. 3 Weinheim, Germany: Verlag Chemie; 1983.

    Google Scholar 

  • Bisbis, B.; Billard, J. P.; Huault, C.; Kevers, C.; Le Dily, F.; Gaspar, Th. Biosynthesis of 5 aminolevulinic acid via the Shemin pathway in green sugar beet callus. Biol. Plant 40:493–497; 1997/1998.

    Article  CAS  Google Scholar 

  • Bisbis, B.; Kevers, C.; Penel, C.; Greppin, H.; Gaspar, Th., Biosynthesis of tetrapyrrole-containing compounds including peroxidases in nonchlorophyllous fully habituated sugarbeet callus via the unique shemin pathway. Plant Peroxidase Newsl. 11:19–26; 1998.

    Google Scholar 

  • Bremner, D. H.; Magill, W. J.; Benson, E. E.; An evaluation of analytical methods for the detection of secondary oxidation products in dedifferentiated plant cultures. Phyton 37:39–44; 1997.

    CAS  Google Scholar 

  • Burdon, R. H.; Gill, V.; Rice-Evans, C.; Oxidative stress and tumour cell proliferation. Free Rad. Res. Commun. 1:65–76; 1990.

    Google Scholar 

  • Deighton, N.; Magill W. J.; Bremner, D. H.; Benson, E. E.. Malondialdehyde and 4-hydroxy-2-nonenal in plant tissue cultures: LC-MS determination of 2,4-dinitrophenylhydrazone derivatives. Free Rad. Res. 27:255–265; 1997.

    Article  CAS  Google Scholar 

  • Dizdaroglu, M.. Characterisation of free radical-induced damage to DNA by the combined use of enzymatic hydrolysis and gas chromatographymass spectroscopy. J. Chromatogr. 367:357–366; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Drotar, A.; Phelps P.; Fall, R.; Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci. 42:35–40; 1985.

    Article  CAS  Google Scholar 

  • Earnshaw, B. A.; Johnson, M. A.. The effect of glutathione on development in wild carrot cell suspension cultures. Biochem. Biophys. Res. Commun. 133:988–993; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H.; Cheeseman, K. H. Determination of aldehydic lipid peroxidation products: malondialdehyde and 4-hydroxyalkenal. Methods Enzymol. 186:407–421; 1990.

    PubMed  CAS  Google Scholar 

  • Esterbauer, H.; Zollner, H.; Methods for the determination of aldehydic lipid peroxidation products. Free Rad. Biol. Med. 7:197–203; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H.; Zollner, H.; Schaur, R. J.. Hydroxyalkenals: cytotoxic products of lipid peroxidation. ISI Atlas Sci. Biochem. 1:311–317; 1988.

    CAS  Google Scholar 

  • Fantel, A. G.; Mackler, B.; Stamps, L. D.; Tran, T. T.; Person, R. E.; Reactive oxygen species and DNA oxidation in fetal rat tissues. Free Rad. Biol. Med. 25:95–103; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Fleck, R. A., Benson, E. E.; Bremner, D. H.; Day, J. G.; Studies of freeradical mediated cryoinjury in the unicellular green alga Euglena gracillis using a non-destructive hydroxyl radical assay: a novel approach for developing protistan cryopreservation strategies. Free Rad. Res. 32:157–170; 2000.

    Article  CAS  Google Scholar 

  • Fleck, R. A.; Day, J. G.; Clarke, K. J.; Benson, E. E.. Elucidation of the metabolic and structural basis for the cryopreservation of recalcitrance in Vaucheria sessillis Cryo-Lett. 20:271–282; 1999.

    Google Scholar 

  • Fraga, C. G.; Leobovitz, B. E.; Tappel, A. L. Lipid peroxidation measured as thiobarbituric acid reactive substances in tissue slices: characterisation and comparison of homogenates and microsomes. Free Rad. Biol. Med. 4:155–161; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Frankel, E. N. Biological significance of secondary lipid peroxidation products. Free Rad. Res. Commun. 3:213–225; 1987.

    CAS  Google Scholar 

  • Garcia, F. G.; Einset, J. W.. Ethylene and ethane production in 2,4-D and salt treated tobacco tissue cultures. Anal. Bot. 51:287–295; 1983.

    CAS  Google Scholar 

  • Gaspar, Th.; Kevers, C.; Bisbis, B.; Franck, Th. Crevecouer, M.; Greppin, H.; Dommes, J.. Loss of plant oganogenic totipotency in the course of in vitro neoplastic progression. In Vitro Cell. Dev. Biol.-Plant 36:171–181; 2000.

    CAS  Google Scholar 

  • Goodman, B. A.; Deighton, N.; Glidewell, S. M.; Wood, C. B.; Pritchard H. W.; Benson, E. E. Do EPR spectra show the presence of a unique ubiquitous quinone-derived free radical that is associated with senescence in plants. Free Rad. Res. 23:187–200; 1995.

    CAS  Google Scholar 

  • Gude, H.; van der Plas, L. H. W. Endogenous ethylene formation and the development of the alternative pathway in potato tuber disks. Physiol. Plant 65:57–62; 1985.

    Article  CAS  Google Scholar 

  • Gunse, B.; Elstner, E. F.; Formation of activated states of indoleacetic acid and cytokinins: an experimental approach to a hypothesis concerning signal transaction. J. Plant Physiol. 140:536–540; 1992.

    CAS  Google Scholar 

  • Harding, K.; Benson, E. E. Methods for the biochemical and molecular analysis of cryopreserved plant tissue cultures In: Grout, B. W. W. eds. Genetic preservation of plant cells in vitro. Berlin: Springer-Verlag; 1995; 113–169.

    Google Scholar 

  • Heath, R. L.; Packer, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189–198; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Hendry, G. A. F.; Crawford, R. M. M.. Oxygen and environmental stress in plants: an overview. Proc. R. Soc. Edinburgh. Sect. B 102:1–10; 1994.

    Google Scholar 

  • Janero, D. R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidative tissue injury. Free Rad. Biol. Med. 9:515–540; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic, S.; Clements, D.; MacLeod, K. Biomarkers of oxidative stress are significantly elevated in Down syndrome. Free Rad. Biol. Med. 25:1044–1048; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Kapahi, P.; Boulton, M. E.; Kirkwood, T. B. L. Positive correlation between mammalian life span and cellular resistance to stress. Free Rad. Biol. Med. 26:495–500; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kikugawa, K. Fluorescent products derived from the reaction of primary amines and components in peroxidized lipids. Adv. Free Rad. Biol. Med. 2:389–417; 1986.

    CAS  Google Scholar 

  • Larson, R. A. The antioxidants of higher plants. Phytochemistry 27:969–978; 1988.

    Article  CAS  Google Scholar 

  • Le Dily, F.; Huault, C.; Gaspar, Th.; Billard, J.-P.. Does altered nitrogen metabolism and H2O2 accumulation explain the vitrified status of fully habituated callus of Beta vulgaris (L)? Plant Cell Tiss. Org. Cult. 35:69–74; 1993.

    Article  Google Scholar 

  • Leshem, Y. Y.; Plant senescence processes and free radicals. Fee Rad. Biol. Med. 5:39–49; 1988.

    Article  CAS  Google Scholar 

  • Lunec, J.; Dormandy, T. L. Fluorescent lipid peroxidation products in synovial fluid. Clin. Sci. 56:53–59; 1979.

    PubMed  CAS  Google Scholar 

  • Maitre, R. K.; Sen, S. P. Production of ethylene and ethane by callus tissues of Daucus carota L. in the presence of 2,4-disubstituted phenols. Plant Sci. 62:33–35; 1989.

    Article  Google Scholar 

  • Marx, J. L. Oxygen free radicals linked to many diseases. Science 235:529–531; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mason, R. P.; Walter, M. F.; Mason P. E. Effect of oxidative stress on membrane structure: small angle X-ray diffraction analysis. Free Rad. Biol. Med. 23:419–425; 1997.

    Article  PubMed  CAS  Google Scholar 

  • McCown, B. H. Recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. In Vitro Cell. Dev. Biol.-Plant 36:149–154; 2000.

    Google Scholar 

  • Mecocci, P.; Fano, G.; Fulle, S.; MacGarvey, U.; Shinobu, L.; Polidori, M. C.; Cherubini, A.; Vecchiet, J.; Senin, U.; Beal, M. F.. Age-dependent increases in oxidative damage to DNA, lipids and proteins in human skeletal muscle. Free Rad. Biol. Med 26:303–308; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Mehdy, M. C. Update on signal transaction: Active oxygen species in plant defence against pathogens. Plant Physiol. 105:467–472; 1994.

    PubMed  CAS  Google Scholar 

  • Munday, R. Toxicity of thiols and disulphides: involvement of free-radical species. Free Rad. Biol. Med. 7:659–673; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, L.; Magill, W. J.; Benson, E. E.; Bremner, D. H.; Buultjens, T. E. J. Oxidative stress in the plant tissue culture environment. Biochem. Soc. Trans. 23:263S; 1995.

    Google Scholar 

  • Saran, M.; Bors, W. Oxygen radicals acting as chemical messengers: a hypothesis. Free Rad. Biol. Med. 7:213–220; 1989.

    CAS  Google Scholar 

  • Weber, G. F. The measurement of oxygen-derived free radicals and related substances in medicine. J. Chem. Clin. Biochem. 28:569–603; 1990.

    CAS  Google Scholar 

  • Wright, R. M.; McManaman, J. L.; Repine, J. E.. Alcohol-induced breast cancer: a proposed mechanism. Free Rad. Biol. Med. 26:348–354; 1999.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica E. Benson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, E.E. Special symposium: In vitro plant recalcitrance do free radicals have a role in plant tissue culture recalcitrance?. In Vitro Cell.Dev.Biol.-Plant 36, 163–170 (2000). https://doi.org/10.1007/s11627-000-0032-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-000-0032-4

Key words

Navigation