Skip to main content
Log in

A protein from Naegleria amoebae causes apoptosis in chick embryo and cho cells after they become confluent

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Exposure for less than an hour to a protein isolated from Naegleria amoebae initiates a process that has no apparent effect on the appearance or growth of chick embryo or CHO cell cultures for 4 to 9 days; after the development of confluency, at some unknown signal, all of the cells undergo an apoptotic death within a 12- to 24-hour period. Abnormalities detected among the last mitotic cells include chromosomal breakage and early reversal in metaphase to telo/interphase daughter nuclei with irregular shapes. Additional events in the dying cultures include the development of a cytoplasmic amoebicrelated immunogen, gross DNA fragmentation, cell blebbing, shrinkage, and apoptotic body formation. Culture death included all cells, those present in confluent cultures when the protein was added, and in other cultures, those formed during a more than 30-fold increase in cells as the cultures became confluent. The increase in the number of cells followed by the uniformity and synchrony of their death pattern indicates that the signal to kill has increased and spread throughout the culture; upon an unknown condition related to confluency, events are initiated that lead to the unusual apoptotic death of the culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arends, M. J.; Morris, R. G.; Wyllie, A. H. Apoptosis. The role of the endonuclease. Am. J. Pathol. 136:593–608; 1990.

    PubMed  CAS  Google Scholar 

  • Balamuth, W. Nutritional studies on axenic cultures of Naegleria gruberi. J. Protozool. 11:(Suppl)19–20; 1964.

    Google Scholar 

  • Barrett, A. J. Classification of peptidases. In: Barrett, A. J., ed. Methods in enzymology. San Diego: Academic Press; 244:1–15; 1994.

    Google Scholar 

  • Bracci-Laudiero, L.; Vigneti, E.; Iannicola, C.; Aloe, L. NGF retards apoptosis in chick embryo bursal cell in vitro. Differentiation 53:61–66; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Castedo, M.; Hirsch, T.; Susin, S. A.; Zamzami, N.; Marchetti, P.; Macho, A.; Kroemer, G. Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. J. Immunol. 157:512–521; 1996.

    PubMed  CAS  Google Scholar 

  • Charriaut-Marlangue, C.; Ben-Ari, Y. A cautionary note on the use of the TUNEL stain to determine apoptosis. Neuroreport 7:61–64; 1995.

    PubMed  CAS  Google Scholar 

  • Collins, R. J.; Harmon, B. V.; Gobe, G. C.; Kerr, J. F. R. Internucleosomal DNA cleavage should not be the sole criterion for identifying apoptosis. Int. J. Radiat. Biol. 61:451–453; 1992.

    PubMed  CAS  Google Scholar 

  • Cotter, T. G.; Lennon, S. V.; Glynn, J. M.; Green, D. R. Microfilament-disrupting agents prevent the formation of apoptotic bodies in tumor cells undergoing apoptosis. Cancer Res. 52:997–1005; 1992.

    PubMed  CAS  Google Scholar 

  • Damgaard, J.; Balslev, Y.; Møllgaard, K.; Wassermann, K. Ongoing activity of RNA polymerase II precludes chromatin collapse and DNA fragmentation in Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 227:677–683; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dini, L.; Coppola, S.; Ruzittu, M. T.; Ghibelli, L. Multiple pathways for apoptotic nuclear fragmentation. Exp. Cell Res. 223:340–347; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Dunnebacke, T. H. Cytopathic changes associated with poliovirus infections in human amnion cells. Virology 2:811–819; 1956.

    Article  PubMed  CAS  Google Scholar 

  • Dunnebacke, T. H.; Dixon, J. S. NACM, a cytopathogen from Naegleria ameba: purification, production of monoclonal antibody, and immunoreactive material in NACM-treated vertebrate cell cultures. J. Cell Sci. 93:391–401; 1989.

    Google Scholar 

  • Dunnebacke, T. H.; Dixon, J. S. NACM, a cytopathogenic protein from Naegleria gruberi, EG8; purification, production of monoclonal antibody, and the immunoidentification of a product that develops in NACM-treated vertebrate cell cultures. J. Protozool. 37:11S-16S; 1990.

    PubMed  CAS  Google Scholar 

  • Dunnebacke, T. H.; Schuster, F. L. Infectious agent from a free-living soil amoeba, Naegleria gruberi. Science (Wash DC) 174:516–518; 1971.

    Article  CAS  Google Scholar 

  • Dunnebacke, T. H.; Schuster, F. L. An infectious agent associated with amebas of the genus Naegleria. J. Protozool. 21:327–329; 1974.

    PubMed  CAS  Google Scholar 

  • Dunnebacke, T. H.; Schuster, F. L. The nature of a cytopathogenic material present in amebae of the genus Naegleria. Am. J. Trop. Med. Hyg. 26:412–421; 1977a.

    PubMed  CAS  Google Scholar 

  • Dunnebacke, T. H.; Schuster, F. L. Cytopathogenic material from amoebae of the genus Naegleria. Microbiology 1977. Washington, D.C. Am. Soc. Microbiol. 1977b:583–585.

  • Dunnebacke, T. H.; Schuster, F. L. Morphological response of cultured cells to Naegleria amoeba cytopathogenic material. J. Cell Sci. 75:1–16; 1985.

    PubMed  CAS  Google Scholar 

  • Enari, M.; Sakahira, H.; Yokoyama, H.; Okawa, K.; Iwamatsu, A.; Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature (Lond) 391:43–50; 1998.

    Article  CAS  Google Scholar 

  • Enright, H.; Hebbel, R. P.; Nath, K. A. Internucleosomal cleavage of DNA as the sole criterion for apoptosis may be artifactual. J. Lab. Clin. Med. 124:63–68; 1994.

    PubMed  CAS  Google Scholar 

  • Gavrieli, Y.; Sherman, Y.; Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119:493–501; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Harvey, A. N.; Savage, J. R. K. Investigating the nature of chromatid breaks produced by restriction endonucleases. Int. J. Radiat. Biol. 71:21–28; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. D.; Burne, J. F.; Raff, M. C. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J. 13:1899–1910; 1994.

    PubMed  CAS  Google Scholar 

  • Kerr, J. F. R.; Winterford, C. M.; Harmon, B. V. Apoptosis: its significance in cancer and cancer therapy. Cancer 73:2013–... 1994.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, J. F. R.; Wyllie, A. H.; Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257; 1972.

    PubMed  CAS  Google Scholar 

  • Kroemer, G.; Zamzami, N.; Susin, S. A. Mitochondrial control of apoptosis. Immunol. Today 18:44–51; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Lai, E. Y.; Minucci, S.; Coon, H. G.; Fulton, C. An infective agent from Naegleria amebae induces delayed cell death in mammalian cells. J. Cell Biol. 111:494a; 1990.

  • Lazebnik, Y. A.; Takahashi, A.; Poirier, G. G.; Kaufmann, S. H.; Earnshaw, W. C. Characterization of the execution phase of apoptosis in vitro using extracts from condemned-phase cells. J. Cell Sci. Suppl. 19:41–49; 1995.

    PubMed  CAS  Google Scholar 

  • Marini, M.; Musiani, D.; Sestili, P.; Cantoni, O. Apoptosis of human lymphocytes in the absence or presence of internucleosomal DNA cleavage. Biochem. Biophys. Res. Commun. 229:910–915; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Radvanyi, L. G.; Shi, Y.; Mills, G. B.; Miller, R. G. Cell cycle progression out of G1 sensitizes primary-cultured nontransformed T cells to TCR-mediated apoptosis. Cell. Immunol. 170:260–273; 1996.

    Article  PubMed  Google Scholar 

  • Samali, A.; Gorman, A. M.; Cotter, T. G. Apoptosis—the story so far ... Experientia 52:933–941; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Saunderson, C. J. Morphological aspects of lymphocyte mediated cytotoxicity. In: Clark, W. R.; Golstein, P., ed. Mechanisms of cell mediated cytotoxicity. New York: Plenum Press; 1982:3–21.

    Google Scholar 

  • Schulze-Osthoff, K.; Walczak, H.; Droge, W.; Krammer, P. H. Cell nucleus and DNA fragmentation are not required for apoptosis. J. Cell Biol. 127:15–20; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, F. L.; Dunnebacke, T. H. Cytopathology induced by cell-free lysates of Naegleria spp. J. Protozool. 23(Suppl. 7A); 1976.

  • Schuster, F. L.; Dunnebacke, T. H. Lysates of Naegleria amebas: ultrastructural and autoradiographic studies of induced cytopathology in tissue culture systems. 2nd International Conference on the Biology and Pathology of Small Free-living Amoebae, University of Florida, Gainesville, Florida, March 23–25, 1980. US Dept. Health and Human Serv., Public Health Ser. Centers for Disease Control 1980:59–87.

  • Skulachev, V. P. The “cell suicide protein” is hidden in the intermembrane space of mitochondria. On its release, it causes apoptosis. Biochemistry (Moscow) 61:1477–1479; 1996.

    Google Scholar 

  • Stuppia, L.; Gobbi, P.; Zamai, L.; Palka, G.; Vitale, M.; Falcieri, E. Morphometric and functional study of apoptotic cell chromatin. Cell Death Differ. 3:397–405; 1996.

    PubMed  CAS  Google Scholar 

  • Tucker, J. D.; Auletta, A.; Cimino, M. C.; Dearfield, K. L.; Jackobson-Kram, D.; Tice, R. R.; Carrano, A. V. Sister-chromatid exchange: second report of the Gene-Tox program. Mutat. Res. 297:101–180; 1993.

    PubMed  CAS  Google Scholar 

  • Verhaegen, S. Microscopical study of cell death via apoptosis. The Americas Microscopy and Analysis 28:19–21; 1998.

    Google Scholar 

  • Vidar, C. A.; Chen, C. H.; Ling, C. C.; Dewey, W. C. Apoptosis induced by x-irradiation of rec-myc cells is postmitotic and not predicted by the time after irradiation or behavior of sister cells. Cancer Res. 56:4116–4118; 1996.

    Google Scholar 

  • Wallet, F.; Gérard, H.; Martin, P.-M.; Dussert, C. Toward a new method to in situ study of apoptosis and its relations with cell cycle. Cytometry 25:263–270; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, C. M.; Reynolds, J. E.; Morana, S. J.; Eastman, A. The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis. Exp. Cell Res. 230:22–27; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, S.; Perry, P. Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 48:341–353; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A. H. Viruses hold the keys of death. Cell Death Differ. 3:1; 1996.

    PubMed  CAS  Google Scholar 

  • Wyllie, A. H.; Kerr, J. F. R.; Currie, A. R. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251–306; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Xu, J.; Xu, Y.; Nguyen, Q.; Novikoff, P. M.; Czaja, M. J. Induction of hepatoma cell apoptosis by c-myc requires zinc and occurs in the absence of DNA fragmentation. Am. J. Physiol. 270 (Gastrointest. Liver Physiol. 33):G60-G70; 1996.

    PubMed  CAS  Google Scholar 

  • Yonish-Rouach, E.; Grunwald, D.; Wilder, S.; Kimchi, A.; May, E.; Lawrence, J.-J.; May, P.; Oren, M. p53-Mediated cell death: relationship to cell cycle control. Mol. Cell. Biol. 13:1415–1423; 1993.

    PubMed  CAS  Google Scholar 

  • Zamai, L.; Falcieri, E.; Marhefka, G.; Vitale, M. Supravital exposure to propidium iodide identifies apoptotic cells in the absence of nucleosomal DNA fragmentation. Cytometry 23:303–311; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Zamzami, N.; Susin, S. A.; Marchetti, P.; Hirsch, T.; Gómez-Monterrey, I.; Castedo, M.; Kroemer, G. Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183:1533–1544; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C.; Ao, Z.; Seth, A.; Schlossman, S. F. A mitochondrial membrane protein defined by a novel monoclonal antibody is preferentially detected in apoptotic cells. J. Immunol. 157:3980–3987; 1996.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunnebacke, T.H., Walen, K.H. A protein from Naegleria amoebae causes apoptosis in chick embryo and cho cells after they become confluent. In Vitro Cell.Dev.Biol.-Animal 35, 252–261 (1999). https://doi.org/10.1007/s11626-999-0069-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-999-0069-6

Key words

Navigation