Skip to main content
Log in

Establishment of a human fibroblast cell line producing tumor necrosis factor α (KMST-6/TNF) and growth inhibitory effects of its conditioned medium on malignant cells in culture

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

To develop a new gene therapy model for cancer, a clonal cell line (KMST-6/TNF) which produces human tumor necrosis factor α (hTNF-α) has been developed by introducing hTNF-α cDNA into a human immortal fibroblast cell line (KMST-6). The conditioned medium (CM) of KMST-6/TNF cells inhibited the growth of various malignant human cell lines, but not that of normal human fibroblasts. Although the growth inhibitory effects of KMST-6/TNF CM were neutralized to a considerable degree by anti-TNF-α antibody, its inhibitory effects were more marked than the purified human natural TNF-α itself in the same units, suggesting that KMST-6/TNF CM contains some growth inhibitory substances other than TNF-α. However, interferons α, β, and γ were undetectable in the KMST-6/TNF CM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbruzzese, J. L.; Levin, B.; Ajani, J. A., et al. Phase I trial of recombinant human γ-interferon and recombinant human tumor necrosis factor in patients with advanced gastrointestinal cancer. Cancer Res. 49:4057–4061; 1989.

    PubMed  CAS  Google Scholar 

  • Bai, L.; Mihara, K.; Kondo, T., et al. Immortalization of normal human fibroblasts by treamtent with 4-nitroquinoline1-oxide. Int. J. Cancer 53:451–456; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Budd, G. T.; Green, S.; Baker, L. H., et al. A southwest oncology group phase II trial of recombinant tumor necrosis factor in metastatic breast cancer. Cancer 68:1694–1695; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Carswell, E. A.; Old, L. J.; Kassel, R. L., et al. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. USA 72:3666–3670; 1975.

    Article  PubMed  CAS  Google Scholar 

  • Chouaib, S.; Bertoglio, J.; Blay, J. Y., et al. Generation of lymphokine-activated killer cells: synergy between tumor necrosis factor and interleukin 2. Proc. Natl. Acad. Sci. USA 85:6875–6879; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Creaven, P. J.; Brenner, D. E.; Cowens, J. W., et al. A phase I clinical trial of recombinant human tumor necrosis factor given daily for five days. Cancer Chemother. Pharmacol. 23:186–191 1989.

    PubMed  CAS  Google Scholar 

  • Eggimann, P.; Chioléro, R.; Chassot, P. G., et al. Systemic and hemodynamic effects of recombinant tumor necrosis factor alpha in isolation perfusion of the limbs. Chest 107:1074–1082; 1995.

    PubMed  CAS  Google Scholar 

  • Fiers, W. Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 285:199–212; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Fujii, S.; Liu, Y.; Neda, H., et al. Augmented systemic immunity in mice implanted with tumor necrosis factor-α gene-transduced Meth-A cells. Jpn. J. Cancer Res. 85:315–324; 1994.

    PubMed  CAS  Google Scholar 

  • Fukuda, S.; Ando, S.; Sanou, O., et al. Simultaneous production of natural human tumor necrosis factor-α, -β and interferon-α from BALL-1 cells stimulated by HVJ. Lymphokine Res. 7:175–185; 1988.

    PubMed  CAS  Google Scholar 

  • Goossens, V.; Grooten, J.; de Vos, K., et al. Direct evidence for tumor necrosis factor-induced mitochondrial reactive oxygen intermediates and their involvement in cytotoxicity. Proc. Natl. Acad. Sci. USA 92:8115–8119; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Hahne, M.; Jäger, U.; Isenmann, S., et al. Five tumor necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes. J. Cell Biol. 121:655–664; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Irmler, M.; Thome, M.; Hahne, M., et al. Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jahan, I.; Mihara, K.; Namba, M. Neoplastic transformation and characterization of human fibroblasts by treatment with 60Co gamma rays and the human c-Ha-ras oncogene. In Vitro Cell. Dev. Biol. 29A:763–767; 1993.

    Article  CAS  Google Scholar 

  • Johnston, M. D.; Finter, N. B.; Young, P. A. Dye uptake method for assay of interferon activity. Methods Enzymol. 78:394–399; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Kessler, M.; Höper, J.; Harrison, D. K., et al. Tissue O2 supply under normal and pathological conditions. In: Lübbers, D. W.; Acker, H.; Leniger-Follert, E., et al., ed. Oxygen transport to tissue-V. New York: Plenum; 1984:69–80.

    Google Scholar 

  • Matthews, N.; Neale, M. L.; Jackson, S. K., et al. Tumour cell killing by tumour necrosis factor: inhibition by anaerobic conditions, free-radical scavengers and inhibitors of arachidonate metabolism. Immunology 62:153–155; 1987.

    PubMed  CAS  Google Scholar 

  • Mihara, K.; Bai, L.; Kano, Y., et al. Malignant transformation of human fibroblasts previously immortalized with 60Co gamma rays. Int. J. Cancer 50:639–643; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Namba, M.; Nishitani, K.; Hyodoh, F., et al. Neoplastic transformation of human diploid fibroblasts (KMST-6) by treatment with 60Co gamma rays. Int. J. Cancer 35:275–280; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Orita, K.; Fuchimoto, S.; Kurimoto, M., et al. Early phase II study of interferon-α and tumor necrosis factor-α combination in patients with advanced cancer. Acta Med. Okayama 46:103–112; 1992.

    PubMed  CAS  Google Scholar 

  • Østensen, M. E.; Thiele, D. L.; Lipsky, P. E. Tumor necrosis factor-α enhances cytolytic activity of human natural killer cells. J. Immunol. 138:4185–4191; 1987.

    PubMed  Google Scholar 

  • Pfizenmaier, K.; Scheurich, P.; Schlüter, C., et al. Tumor necrosis factor enhances HLA-A,B,C and HLA-DR gene expression in human tumor cells. J. Immunol. 138:975–980; 1987.

    PubMed  CAS  Google Scholar 

  • Retsas, S.; Leslie, M.; Bottomley, D. Intralesional tumour necrosis factor combined with interferon gamma in metastatic melanoma. Br. Med. J. 298:1290–1291; 1989.

    Article  CAS  Google Scholar 

  • Rosenberg, S. A. Gene therapy for cancer. JAMA 268:2416–2419; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Rothe, M.; Pan, M. G.; Henzel, W. J., et al. The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Shalaby, M. R.; Aggarwal, B. B.; Rinderknecht, E., et al. Activation of human polymorphonuclear neutrophil functions by interferon-γ and tumor necrosis factors, J. Immunol. 135:2069–2073; 1985.

    PubMed  CAS  Google Scholar 

  • Shaw, G.; Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Takebe, Y.; Seiki, M.; Fujisawa, J., et al. SRα promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol. 8:466–472; 1988.

    PubMed  CAS  Google Scholar 

  • Talmage, J. E.; Phillips, H.; Schneider, M., et al. Immunomodulatory properties of recombinant murine and human tumor necrosis factor. Cancer Res. 48:544–550; 1988.

    Google Scholar 

  • Uren, A. G.; Pakusch, M.; Hawkins, C. J., et al. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor associated factors. Proc. Natl. Acad. Sci. USA 93:4974–4978; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Van Antwerp, D. J.; Martin, S. J.; Kafri, T., et al. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274:787–789; 1996.

    Article  PubMed  Google Scholar 

  • Wang, C. Y.; Mayo, M. W.; Baldwin, A. S., Jr. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-κB. Science 274:784–787; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Wölfel, T.; Herr, W.; Coulie, P., et al. Lysis of human pancreatic adenocarcinoma cells by autologous HLA-class I-restricted cytolytic T-lymphocyte (CTL) clones. Int. J. Cancer 54:636–644; 1993.

    Article  PubMed  Google Scholar 

  • Wong, G. H. W.; Elwell, J. H.; Oberley, L. W., et al. Manganous superoxide dismutase is essential for cellular resistance to cytotoxicity of tumor necrosis factor. Cell 58:923–931; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki, S.; Onishi, E.; Enami, K., et al. Proposal of standardized methods and reference for assaying recombinant human tumor necrosis factor. Jpn. J. Med. Sci. Biol. 39:105–118; 1986.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fushimi, K., Torigoe, K., Yamauchi, H. et al. Establishment of a human fibroblast cell line producing tumor necrosis factor α (KMST-6/TNF) and growth inhibitory effects of its conditioned medium on malignant cells in culture. In Vitro Cell.Dev.Biol.-Animal 34, 463–467 (1998). https://doi.org/10.1007/s11626-998-0079-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0079-9

Key words

Navigation