Skip to main content
Log in

Enhanced neointimal growth in cultured rabbit aorta following in vivo balloon angioplasty

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We have used in vivo balloon catheterization in combination with in vitro organ culture to develop a model system for vascular neointima formation. A Fogarty balloon catheter was used to deendothelialize and rupture the internal elastic lamina of aortae in adult rabbits. After three d of recovery, aortae were harvested, divided into segments, and placed into organ culture. We obtained a daily index of cell proliferation in cultured vessels using [3H]thymidine incorporation into DNA. Also, segments were collected and processed for routine histology or immunohistochemistry. Aortic segments that had undergone ballooning 3 d before harvest and then cultured exhibited diffuse neointimal growth after several d in vitro, whereas those from sham-operated (nonballooned) rabbits showed generally only a single endothelial cell layer that is characteristic of normal intima. Aortae that were harvested, balloon-damaged in vitro, and then cultured exhibited no neointimal growth. The neointima that developed in cultured segments from in vivo ballooned rabbits was primarily of smooth muscle cell origin as determined by positive immunostaining for α-smooth muscle actin. The intima:media thickness ratios were significantly higher in aortic segments from ballooned rabbits at harvest and after 4 or 7 d in culture compared with those from nonballooned rabbits. Also, the [3H]thymidine index was higher in the in vivo ballooned aorta compared to non-ballooned or in vitro ballooned vessel. We conclude that ballooning in vivo followed by exposure to blood-borne elements produces an enhanced proliferative response in cultured vessels that is distinct from other in vitro models of neointimal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel, F. M.; Brent, R.; Kingston, R. E., et al. Short protocols in molecular biology. A compendium of methods from current protocols in molecular biology. 2nd ed. New York: John Wiley & Sons; 1992.

    Google Scholar 

  2. Badimon, L.; Alfon, J.; Royo, T., et al. Cell biology of restenosis post-angioplasty. Z. Kardiol. 84 (suppl 4):145–149; 1995.

    PubMed  Google Scholar 

  3. Boonen, H. C. M.; Schiffers, P. M. H.; Fazzi, G. E., et al. DNA synthesis in isolated arteries. Kinetics and structural consequences. Am. J. Physiol. 260:H210-H217; 1991.

    PubMed  CAS  Google Scholar 

  4. Buck, R. C. Organ cultures of rat aorta: a scanning and transmission electron microscopic study. Exp. Mol. Pathol. 77:260–276; 1977.

    Article  Google Scholar 

  5. Christensen, B. C.; Garbarsch, C. Repair in arterial tissue. A scanning electron microscopic (SEM) and light microscopic study on the endothelium of rabbit thoracic aorta following a single dilatation injury. Virchows Arch. Abt. A Pathol. Anat. 73:93–106; 1973.

    Article  Google Scholar 

  6. Clausell, N.; de Lima, V. C.; Molossi, S., et al. Expression of tumour necrosis factor alpha and accumulation of fibronectin in coronary artery restenotic lesions retrieved by atherectomy. Br. Heart J. 95:534–539; 1995.

    Google Scholar 

  7. Clowes, A. W.; Clowes, M. M.; Reidy, M. A. Kinetics of cellular proliferation after arterial injury. III. Endothelial and smooth muscle growth in chronically denuded vessels. Lab. Invest. 86:295–303; 1986.

    Article  Google Scholar 

  8. Edwards, I. J.; Wagner, W. D.; Owens, R. T. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells. Am. J. Pathol. 136:609–621; 1990.

    PubMed  CAS  Google Scholar 

  9. Ehrlich, H. P. Culture of aorta. Methods Cell Biol. 21A:117–134; 1980.

    PubMed  CAS  Google Scholar 

  10. Fagin, J. A.; Cercek, B.; Forrester, J. S. Restenosis: cellular mechanisms. In: Schwartz, R. S., ed. Coronary restenosis. Boston: Blackwell Scientific Publications; 1993:238–248.

    Google Scholar 

  11. Farhy, R. D.; Carretero, O. A.; Ho, K.-L., et al. Role of kinins and nitric oxide in the effects of angiotensin converting enzyme inhibitors on neointima formation. Circ. Res. 72:1202–1210; 1993.

    PubMed  CAS  Google Scholar 

  12. Ferguson, J. J., III. Conventional antithrombotic approaches. Am. Heart J. 95:651–657; 1995.

    Article  Google Scholar 

  13. Fingerle, J.; Faulmuller, A.; Muller, G., et al. Pituitary factors in blood plasma are necessary for smooth muscle cell proliferation in response to injury in vivo. Arterioscler. Thromb. 92:1488–1495; 1992.

    Google Scholar 

  14. Forrester, J. S.; Fishbein, M.; Helfant, R., et al. A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. J. Am. Coll. Cardiol. 17:758–769; 1991.

    Article  PubMed  CAS  Google Scholar 

  15. Gabbiani, G.; Kocher, O.; Bloom, W. S., et al. Actin expression in smooth muscle cells of rat aortic intimal thickening, human atheromatous plaque, and cultured rat aortic media. J. Clin. Invest. 73:148–152; 1984.

    PubMed  CAS  Google Scholar 

  16. Gallo, R.; Hayes, R.; Badimon, L., et al. The role of thrombosis in restenosis. In: Feuerstein, G. Z., ed. Coronary restenosis from genetics to therapeutics. New York: Marcel Dekker, Inc.; 1997:241–255.

    Google Scholar 

  17. Gotlieb, A. I.; Boden, P. Porcine aortic organ culture: a model to study the cellular response to vascular injury. In Vitro 84:535–542; 1984.

    Google Scholar 

  18. Groves, P. H.; Banning, A. P.; Penny, W. J., et al. Kinetics of smooth muscle cell proliferation and intimal thickening in a pig carotid model of balloon injury. Atherosclerosis 95:83–96; 1995.

    Article  Google Scholar 

  19. Hanke, H.; Hassenstein, S.; Ulmer, A., et al. Accumulation of macrophages in the arterial vessel wall following experimental balloon angioplasty. Eur. Heart J. 15:691–698; 1994.

    PubMed  CAS  Google Scholar 

  20. Hanke, H.; Strohschneider, T.; Oberhoff, M., et al. Time course of smooth muscle cell proliferation in the intima and media of arteries following experimental angioplasty. Circ. Res. 67:651–659; 1990.

    PubMed  CAS  Google Scholar 

  21. Hsu, S. M.; Raine, L.; Fanger, H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J. Histochem. Cytochem. 81:577–580; 1981.

    Google Scholar 

  22. Humphrey, W. R.; Simmons, C. A.; Toombs, C. F., et al. Induction of neointimal hyperplasia by coronary angioplasty balloon overinflation: comparison of feeder pigs to Yucatan minipigs. Am. Heart J. 94:20–31; 1994.

    Article  Google Scholar 

  23. Jackman, R. W.; Anderson, S. K.; Sheridan, J. D. The aortic intima in organ culture. Response to culture conditions and partial endothelial denudation. Am. J. Pathol. 133:241–251; 1988.

    PubMed  CAS  Google Scholar 

  24. Koo, E. W.; Gotlieb, A. I. The use of organ cultures to study vessel wall pathobiology. Scanning Microsc. 92:827–834; discussion 835, 1992.

    Google Scholar 

  25. Lee, P. C.; Gibbons, G. H.; Dzau, V. J. Cellular and molecular mechanisms of coronary artery restenosis. Coron. Artery Dis. 93:254–259; 1993.

    Article  Google Scholar 

  26. Lyle, E. M.; Fujita, T.; Conner, M. W., et al. Effect of inhibitors of factor Xa or platelet adhesion, heparin, and aspirin on platelet deposition in an atherosclerotic rabbit model of angioplasty injury. J. Pharmacol. Toxicol. Methods 95:53–61; 1995.

    Article  Google Scholar 

  27. Merrilees, M. J.; Scott, L. Organ culture of rat carotid artery: maintenance of morphological characteristics and of pattern of matrix synthesis. In Vitro 82:900–910; 1982.

    Google Scholar 

  28. Morisaki, N.; Koyama, N.; Kawano, M., et al. Human macrophages modulate the phenotype of cultured rabbit aortic smooth muscle cells through secretion of platelet-derived growth factor. Eur. J. Clin. Invest. 22:461–468; 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Neumann, F. J.; Ott, I.; Gawaz, M., et al. Neutrophil and platelet activation at balloon-injured coronary artery plaque in patients undergoing angioplasty. J. Am. Coll. Cardiol. 96:819–824; 1996.

    Article  Google Scholar 

  30. Pederson, D. C.; Bowyer, D. E. Endothelial injury and healing in vitro. Studies using an organ culture system. Am. J. Pathol. 119:264–272; 1985.

    PubMed  CAS  Google Scholar 

  31. Puchtler, H.; Meloan, S. N. Orcein, collastin and pseudo-elastica: a reinvestigation of Unna’s concepts. Histochemistry 79:119–130; 1979.

    Article  Google Scholar 

  32. Reidy, M. A.; Bendeck, M. P. The development of arterial lesions: a process controlled by multiple factors. In: Feuerstein, G. Z., ed. Coronary restenosis from genetics to therapeutics. New York: Marcel Dekker, Inc.; 1997:55–67.

    Google Scholar 

  33. Ross, R. George Lyman Duff Memorial Lecture. Atherosclerosis: a problem of the biology of arterial wall cells and their interactions with blood components. Arteriosclerosis 1:293–311; 1981.

    PubMed  CAS  Google Scholar 

  34. Sade, R. M.; Folkman, J.; Cotran, R. S. DNA synthesis in endothelium of aortic segments in vitro. Exp. Cell Res. 74:297–306; 1972.

    Article  PubMed  CAS  Google Scholar 

  35. Schwartz, R. S.; Holmes, D. R., Jr.; Topol, E. J. The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J. Am. Coll. Cardiol. 20:1284–1293; 1992.

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz, S. M.; Reidy, M. A.; O’Brien, E. R. Assessment of factors important in atherosclerotic occlusion and restenosis. Thromb. Haemostasis 95:541–551; 1995.

    Google Scholar 

  37. Slomp, J.; Gittenberger-deGroot, A. C.; van Munsteren, J. C., et al. Nature and origin of the neointima in whole vessel wall organ culture of the human saphenous vein. Virchows Archiv. 96:59–67; 1996.

    Google Scholar 

  38. Stevens, A. The haematoxylins. In: Bancroft, J. D.; Stevens, A., ed. Theory and practice of histological techniques. New York: Churchill Livingstone; 1990:107–118.

    Google Scholar 

  39. St. Clair, R. W.; Lofland, H. B., Jr. Uptake and esterification of exogenous cholesterol by organ cultures of normal and atherosclerotic pigeon aorta. Proc. Soc. Exp. Biol. Med. 71:632–637; 1971.

    Google Scholar 

  40. Wilcox, J. N. Molecular biology: insight into the causes and prevention of restenosis after arterial intervention. Am. J. Cardiol. 72:88E-95E; 1993.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dale, W.E., Batra, P.S. & Blaine, E.H. Enhanced neointimal growth in cultured rabbit aorta following in vivo balloon angioplasty. In Vitro Cell.Dev.Biol.-Animal 34, 805–812 (1998). https://doi.org/10.1007/s11626-998-0035-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-998-0035-8

Key words

Navigation