Skip to main content

Advertisement

Log in

Smooth muscle cells from the anastomosed artery are the major precursors for neointima formation in both artery and vein grafts

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Accumulation of smooth muscle cells (SMC) results in neointima formation in injured vessels. Two graft models consisting of vein and artery grafts were created by anastomosing common carotid arteries to donor vessels. To identify the origin of the neointima cells from anastomosed arteries, we use Wnt1-Cre/reporter mice to label and track SMCs in the common carotid artery. The contribution of SMCs in the neighboring arteries to neointima formation was studied. On evaluating the artery grafts after 1 month, >90 % of the labeled neointima cells were found to have originated from the anastomosing host arteries. Most of the neointima cells were also smooth muscle α-actin positive (SMA-α+) and expressed the smooth muscle myosin heavy chain (SMMHC), the SMC terminal differentiation marker. In vein grafts, about 60 % SMA-α-positive cells were from anastomosing arteries. Bone marrow cells did not contribute to neointima SMCs in vein grafts, but did co-stain with markers of inflammatory cells. Wnt1 expression was not detected in the neointima cells in the vein or artery grafts, or the injured femoral arteries. Neointima SMCs showed the synthetic phenotype and were positively labeled with BrdU in vitro and in vivo. Treatment with the IGF-1 receptor inhibitor suppressed SMC proliferation and neointima formation in vein grafts. Our results indicate that SMCs from the neighboring artery are predominantly present in the neointima formed in both vein and artery grafts and that Wnt1-Cre mice can be used to explore the role of SMCs originating from neighboring vessels in vascular remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

VSMC:

Vascular smooth muscle cells

NC:

Neural crest

Wnt1:

Wingless-type MMTV integration site 1 family

References

  1. Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293:L1–L8. doi:10.1152/ajplung.00378.2006

    Article  PubMed  CAS  Google Scholar 

  2. Bentzon JF, Weile C, Sondergaard CS, Hindkjaer J, Kassem M, Falk E (2006) Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler Thromb Vasc Biol 26:2696–2702. doi:10.1161/01.ATV.0000247243.48542.9d

    Article  PubMed  CAS  Google Scholar 

  3. Caplice NM, Wang S, Tracz M, Croatt AJ, Grande JP, Katusic ZS, Nath KA (2007) Neoangiogenesis and the presence of progenitor cells in the venous limb of an arteriovenous fistula in the rat. Am J Physiol Ren Physiol 293:F470–F475. doi:10.1152/ajprenal.00067.2007

    Article  CAS  Google Scholar 

  4. Chen PY, Qin L, Barnes C, Charisse K, Yi T, Zhang X, Ali R, Medina PP, Yu J, Slack FJ, Anderson DG, Kotelianski V, Wang F, Tellides G, Simons M (2012) FGF regulates TGF-beta signaling and endothelial-to-mesenchymal transition via control of let-7 miRNA expression. Cell Rep 2:1684–1696. doi:10.1016/j.celrep.2012.10.021

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Cheng J, Du J (2007) Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Biol 27:1744–1751. doi:10.1161/ATVBAHA.107.147371

    Article  PubMed  CAS  Google Scholar 

  6. Cheng J, Wang Y, Liang A, Jia L, Du J (2012) FSP-1 silencing in bone marrow cells suppresses neointima formation in Vein Graft. Circ Res 110:230–240. doi:10.1161/circresaha.111.246025

    Article  PubMed  CAS  Google Scholar 

  7. Cooley BC (2004) Murine model of neointimal formation and stenosis in vein grafts. Arterioscler Thromb Vasc Biol 24:1180–1185. doi:10.1161/01.ATV.0000129330.19057.9f

  8. Diez M, Musri MM, Ferrer E, Barbera JA, Peinado VI (2010) Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovasc Res 88:502–511. doi:10.1093/cvr/cvq236

    Article  PubMed  CAS  Google Scholar 

  9. Echelard Y, Vassileva G, McMahon AP (1994) Cis-acting regulatory sequences governing Wnt-1 expression in the developing mouse CNS. Development 120:2213–2224

    PubMed  CAS  Google Scholar 

  10. Engelse MA, Lardenoye JHP, Neele JM, Grimbergen JM, de Vries MR, Lamfers MLM, Pannekoek H, Quax PHA, de Vries CJM (2002) Adenoviral activin a expression prevents intimal hyperplasia in human and murine blood vessels by maintaining the contractile smooth muscle cell phenotype. Circ Res 90:1128–1134. doi:10.1161/01.res.0000021044.53156.f5

  11. Goldman S, Zadina K, Moritz T, Ovitt T, Sethi G, Copeland JG, Thottapurathu L, Krasnicka B, Ellis N, Anderson RJ, Henderson W (2004) Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J Am Coll Cardiol 44:2149–2156. doi:10.1016/j.jacc.2004.08.064

    Article  PubMed  Google Scholar 

  12. Hagensen MK, Shim J, Falk E, Bentzon JF (2011) Flanking recipient vasculature, not circulating progenitor cells, contributes to endothelium and smooth muscle in murine allograft vasculopathy. Arterioscler Thromb Vasc Biol 31:808–813. doi:10.1161/atvbaha.110.221184

    Article  PubMed  CAS  Google Scholar 

  13. Hoglund VJ, Dong XR, Majesky MW (2010) Neointima Formation. Arterioscler Thromb Vasc Biol 30:1877–1879. doi:10.1161/atvbaha.110.211433

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hoofnagle MH, Thomas JA, Wamhoff BR, Owens GK (2006) Origin of neointimal smooth muscle: we’ve come full circle. Arterioscler Thromb Vasc Biol 26:2579–2581. doi:10.1161/01.ATV.0000249623.79871.bc

    Article  PubMed  CAS  Google Scholar 

  15. Hu Y, Bock G, Wick G, Xu Q (1998) Activation of PDGF receptor alpha in vascular smooth muscle cells by mechanical stress. Faseb J 12:1135–1142

    PubMed  CAS  Google Scholar 

  16. Hu Y, Davison F, Ludewig B, Erdel M, Mayr M, Url M, Dietrich H, Xu Q (2002) Smooth muscle cells in transplant atherosclerotic lesions are originated from recipients, but not bone marrow progenitor cells. Circulation 106:1834–1839. doi:10.1161/01.cir.0000031333.86845.dd

    Article  PubMed  Google Scholar 

  17. Hu Y, Xu Q (2002) New Mouse Model of Vein Bypass Graft Atherosclerosis. Heart Lung Circ 11:182–188. doi:10.1046/j.1444-2892.2002.00138.x

    Article  PubMed  Google Scholar 

  18. Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Investig 113:1258–1265. doi:10.1172/JCI19628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Huang J, Cheng L, Li J, Chen M, Zhou D, Lu MM, Proweller A, Epstein JA, Parmacek MS (2008) Myocardin regulates expression of contractile genes in smooth muscle cells and is required for closure of the ductus arteriosus in mice. J Clin Invest 118:515–525. doi:10.1172/JCI33304

    PubMed  CAS  PubMed Central  Google Scholar 

  20. Hutson MR, Kirby ML (2007) Model systems for the study of heart development and disease. Cardiac neural crest and conotruncal malformations. Semin Cell Dev Biol 18:101–110. doi:10.1016/j.semcdb.2006.12.004

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Iwano M, Neilson EG (2004) Mechanisms of tubulointerstitial fibrosis. Curr Opin Nephrol Hypertens 13:279–284. doi:10.1097/01.mnh.0000126791.93346.4a

    Article  PubMed  Google Scholar 

  22. Kennedy E, Hakimjavadi R, Greene C, Mooney CJ, Fitzpatrick E, Collins LE, Loscher CE, Guha S, Morrow D, Redmond EM, Cahill PA (2014) Embryonic rat vascular smooth muscle cells revisited—a model for neonatal, neointimal SMC or differentiated vascular stem cells? Vascular Cell 6:6. doi:10.1186/2045-824X-6-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kobayashi K, Yokote K, Fujimoto M, Yamashita K, Sakamoto A, Kitahara M, Kawamura H, Maezawa Y, Asaumi S, Tokuhisa T, Mori S, Saito Y (2005) Targeted disruption of TGF-{beta}-Smad3 signaling leads to enhanced neointimal hyperplasia with diminished matrix deposition in response to vascular injury. Circ Res 96:904–912. doi:10.1161/01.res.0000163980.55495.44

    Article  PubMed  CAS  Google Scholar 

  24. Mead TJ, Yutzey KE (2012) Notch pathway regulation of neural crest cell development in vivo. Dev Dyn 241:376–389. doi:10.1002/dvdy.23717

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Motwani JG, Topol EJ (1998) Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation 97:916–931. doi:10.1161/01.CIR.97.9.916

    Article  PubMed  CAS  Google Scholar 

  26. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. doi:10.1002/dvg.20335

    Article  PubMed  CAS  Google Scholar 

  27. Scott NA, Cipolla GD, Ross CE, Dunn B, Martin FH, Simonet L, Wilcox JN (1996) Identification of a potential role for the adventitia in vascular lesion formation after balloon overstretch injury of porcine coronary arteries. Circulation 93:2178–2187. doi:10.1161/01.CIR.93.12.2178

    Article  PubMed  CAS  Google Scholar 

  28. Shi Y, O’Brien JE, Fard A, Mannion JD, Wang D, Zalewski A (1996) Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 94:1655–1664. doi:10.1161/01.CIR.94.7.1655

    Article  PubMed  CAS  Google Scholar 

  29. Shi Y, O’Brien JE Jr, Mannion JD, Morrison RC, Chung W, Fard A, Zalewski A (1997) Remodeling of autologous saphenous vein grafts. The role of perivascular myofibroblasts. Circulation 95:2684–2693. doi:10.1161/01.CIR.95.12.2684

    Article  PubMed  CAS  Google Scholar 

  30. Shi Y, Pieniek M, Fard A, O’Brien J, Mannion JD, Zalewski A (1996) Adventitial remodeling after coronary arterial injury. Circulation 93:340–348. doi:10.1161/01.CIR.93.2.340

    Article  PubMed  CAS  Google Scholar 

  31. Shimizu T, De Wispelaere A, Winkler M, D’Souza T, Caylor J, Chen L, Dastvan F, Deou J, Cho A, Larena-Avellaneda A, Reidy M, Daum G (2012) Sphingosine-1-Phosphate Receptor 3 Promotes Neointimal Hyperplasia in Mouse Iliac-Femoral Arteries. Arterioscler Thromb Vasc Biol 32:955–961. doi:10.1161/atvbaha.111.241034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Singh N, Trivedi CM, Lu M, Mullican SE, Lazar MA, Epstein JA (2011) Histone Deacetylase 3 Regulates Smooth Muscle Differentiation in Neural Crest Cells and Development of the Cardiac Outflow Tract/Novelty and Significance. Circ Res 109:1240–1249. doi:10.1161/circresaha.111.255067

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Strieter RM, Keeley EC, Hughes MA, Burdick MD, Mehrad B (2009) The role of circulating mesenchymal progenitor cells (fibrocytes) in the pathogenesis of pulmonary fibrosis. J Leukoc Biol 86:1111–1118. doi:10.1189/jlb.0309132

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Tanaka K, Sata M, Natori T, Kim-Kaneyama JR, Nose K, Shibanuma M, Hirata Y, Nagai R (2008) Circulating progenitor cells contribute to neointimal formation in nonirradiated chimeric mice. Faseb J 22:428–436

    Article  PubMed  CAS  Google Scholar 

  35. Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu JS, Helms JA, Li S (2012) Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun 3:875. doi:10.1038/ncomms1867

    Article  PubMed  PubMed Central  Google Scholar 

  36. Waldo KL, Kumiski D, Kirby ML (1996) Cardiac neural crest is essential for the persistence rather than the formation of an arch artery. Dev Dyn 205:281–292. doi:10.1002/(SICI)1097-0177(199603

    Article  PubMed  CAS  Google Scholar 

  37. Werner N, Nickenig G (2006) Influence of cardiovascular risk factors on endothelial progenitor cells: limitations for therapy? Arterioscler Thromb Vasc Biol 26:257–266. doi:10.1161/01.ATV.0000198239.41189.5d

    Article  PubMed  CAS  Google Scholar 

  38. Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, Mopps B, Mericskay M, Gierschik P, Biessen EA, Weber C (2005) SDF-1α/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res 96:784–791. doi:10.1161/01.res.0000162100.52009.38

    Article  PubMed  CAS  Google Scholar 

  39. Zhang L, Freedman NJ, Brian L, Peppel K (2004) Graft-Extrinsic Cells Predominate in Vein Graft Arterialization. Athro Throm Vascul Biol 24:470–476. doi:10.1161/01.atv.0000116865.98067.31

    Article  Google Scholar 

  40. Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q (1998) Mouse Model of Venous Bypass Graft Arteriosclerosis. Am J Pathol 153:1301–1310. doi:10.1152/ajplung.00378.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge Dr. William E Mitch for his constructive suggestions. We also thank Dr. Abha Sharma for critically reading and modifying the manuscript. This work was supported by grants from RO1 DK095867, the American Heart Association Grant 10SDG2780009 (to J.C.), the National Institutes of Health grants R37 and DK37175, and a generous grant from Dr. and Mrs. Harold Selzman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizhong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Liang, A., Wang, Y. et al. Smooth muscle cells from the anastomosed artery are the major precursors for neointima formation in both artery and vein grafts. Basic Res Cardiol 109, 431 (2014). https://doi.org/10.1007/s00395-014-0431-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-014-0431-z

Keywords

Navigation