Skip to main content

Advertisement

Log in

Development of embryonic chick insulin cells in culture: Beneficial effects of serum-free medium, raised nutrients, and biomatrix

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

A previous finding that insulin cells do not survive or differentiate in explants of embryonic avian pancreas cultured in collagen gel with a serum-containing medium has provided a model system for identification of conditions favorable for development of these cells. To this end, we here modify the substrate and the medium. The epithelial component of dorsal pancreatic buds of 5-d chick embryos was cultured for 7 d on Matrigel in serum-containing and in serum-free medium, the latter incorporating insulin, transferrin, and selenium, Endocrine cell types were distinguished by immunocytochemistry; insulin cell counts were expressed as a proportion of insulin plus glucagon cells. With serum-containing medium, Matrigel stimulated a significant increase in this proportion as compared with collagen gel—3.1% as against 0.2%; the serum-free medium further increased this proportion to 17.3%. Raising the level of essential amino acids approximately fivefold increased the latter figure somewhat (to 18.9%), but it was more than doubled (to 37.4%) by raising the glucose concentration from 10 mM to 20 mM. Raising the levels of amino acids and glucose simultaneously yielded a lesser increase (to 31.8%). Some cultures grown in collagen gel and serum-containing medium for 7 d were transferred to Matrigel and serum-free medium for a further 7 d. Insulin cell development recovered, indicating that progenitor cells had survived and were stimulated to develop by the improved conditions. This study indicates that components of the biomatrix and the medium (in particular, a raised glucose concentration) are important for the survival and differentiation of embryonic insulin cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpert, S.; Hanahan, D.; Teitelman, G. Hybrid insulin genes reveal a developmental lineage for pancreatic endocrine cells and imply a relationship with neurons. Cell 53:295–308; 1988.

    Article  PubMed  CAS  Google Scholar 

  2. Andersson, A. Isolated mouse pancreatic islets in culture: effects of serum and different culture media on the insulin production of the islets. Diabetologia 14:397–404; 1978.

    Article  PubMed  CAS  Google Scholar 

  3. Andrew, A. The development of the gastro-entero-pancreatic neuroendocrine system in birds. In: Falkmer, S.; Håkanson, R.; Sundler, F., eds. Evolution and tumour pathology of the neuroendocrine system. Amsterdam, Netherlands: Elsevier Science Publishers BV; 1984:91–109.

    Google Scholar 

  4. Andrew, A.; Rawdon, B. B.; Alison, B. C. Failure of insulin cells to develop in cultured embryonic chick pancreas: a model system for the detection of factors supporting insulin cell differentiation. In Vitro Cell. Dev. Biol. 30A:664–670; 1994.

    Article  CAS  Google Scholar 

  5. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22:649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  6. Beattie, G. M.; Lappi, D. A.; Hayek, A. Functional impact of attachment and purification in the short term culture of human pancreatic islets. J. Clin. Endocrinol. & Metab. 73:93–98; 1991.

    CAS  Google Scholar 

  7. Benzo, C. A.; Green, T. D. Functional differentiation of the chick endocrine pancreas: insulin storage and secretion. Anat. Rec. 180:491–496; 1974.

    Article  PubMed  CAS  Google Scholar 

  8. Bottenstein, J.; Hayashi, I.; Hutchings, S., et al. The growth of cells in serum-free hormone-supplemented media. In: Jakoby, W. B.; Pastan, I. H., eds. Methods in enzymology. Vol. 58. New York: Academic Press; 1979:94–109.

    Google Scholar 

  9. Bunnag, S. C. Postnatal neogenesis of islets of Langerhans in the mouse. Diabetes 15:480–491; 1966.

    PubMed  CAS  Google Scholar 

  10. de Gasparo, M.; Milner, G. R.; Norris, P. D., et al. Effect of glucose and amino acids on foetal rat pancreatic growth and insulin secretion in vitro. J. Endocrinol. 77:241–248; 1978.

    Article  PubMed  Google Scholar 

  11. Epple, A.; Brinn, J. E. The comparative physiology of the pancreatic islets. Zoophysiology 21. Berlin, Germany: Springer-Verlag; 1987:94.

    Google Scholar 

  12. Foltzer, C.; Haffen, K.; Kedinger, M., et al. Stimulation of insulin and glucagon secretion in organ culture of chick endocrine pancreas during embryonic life and after hatching. Gen. Comp. Endocrinol. 47:213–220; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Fong, H. K. W.; Chick, W. L.; Sato, G. H. Hormones and factors that stimulate growth of a rat islet tumour cell line in serum-free medium. Diabetes 30:1022–1028; 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Gittes, G. K.; Galante, P. E.; Hanahan, D., et al. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development 122:439–447; 1996.

    PubMed  CAS  Google Scholar 

  15. Ham, R. Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. USA 53:288–293; 1965.

    Article  PubMed  CAS  Google Scholar 

  16. Ham, R. G.; McKeehan, W. L. Media and growth requirements. In: Jakoby, W. B.; Pastan, I. H., eds. Methods in enzymology. Vol. 58. New York: Academic Press; 1979:44–93.

    Google Scholar 

  17. Hamburger, V.; Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92; 1951.

    Article  Google Scholar 

  18. Hayek, A.; Lopez, A. D.; Beattie, G. M. Enhancement of pancreatic islet cell monolayer growth by endothelial cell matrix and insulin. In Vitro Cell. Dev. Biol. 25:146–150; 1989.

    Article  PubMed  CAS  Google Scholar 

  19. Jackerott, M.; Øster, A.; Larsson, L.-I. PYY in developing murine islet cells: comparisons to development of islet hormones, NPY, and BrdU incorporation. J. Histochem. Cytochem. 44:809–817; 1996.

    PubMed  CAS  Google Scholar 

  20. Jones, J. I.; Gockerman, A.; Busby, W. H., et al. Extracellular matrix contains insulin-like growth factor binding protein-5—potentiation of the effects of IGF-I. J. Cell Biol. 121:679–687; 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Kaung, H.-L. C.; Hegre, O. D.; Lazarow, A. Development of response to glucose of foetal rat islets in organ culture. Proc. Soc. Exp. Biol. Med. 148:75–79; 1975.

    PubMed  CAS  Google Scholar 

  22. Kinard, F.; de Clercq, L.; Billen, B., et al. Culture of endocrine pancreatic cells in protein-free, chemically defined media. In Vitro Cell. Dev. Biol. 26:1004–1010; 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Kirkland, S. C.; Henderson, K. Endocrine and mucous differentiation by a cloned human rectal adenocarcinoma cell line (HRA-19) in vitro: inhibition by TGF-β1. J. Cell Sci. 107:1041–1046; 1994.

    PubMed  CAS  Google Scholar 

  24. Langslow, D. R. The pancreatic insulin content and its relationship to plasma glucose and free fatty acid concentrations in the embryo and neonatal chick. Br. Poult. Sci. 16:329–333; 1975.

    PubMed  CAS  Google Scholar 

  25. Larsson, L.-I.; Hougaard, D. M. Non-radioactive in situ mRNA hybridisation using synthetic oligonucleotides: principles, combination with immunocytochemistry and quantitation. Neurosci. Protocols 20:1–18; 1993.

    Google Scholar 

  26. Ling, Z.; Hannaert, J. C.; Pipeleers, D. Effect of nutrients, hormones and serum on survival of rat islet beta cells in culture. Diabetologia 37:15–21; 1994.

    PubMed  CAS  Google Scholar 

  27. McEvoy, R. C. Fetal rat pancreas in organ culture: effects of serum on the development of the endocrine cells. Differentiation 17:105–109; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. McEvoy, R.; Leung, P. E. Tissue culture of fetal rat islets: comparison of serum-supplemented and serum-free, defined medium on the maintenance, growth and differentiation of A, B and D cells. Endocrinology 111:1568–1575; 1982.

    PubMed  CAS  Google Scholar 

  29. Muschel, R.; Khoury, G.; Reid, L. M. Regulation of insulin mRNA abundance and adenylation: dependence on hormones and matrix substrata. Mol. Cell. Biol. 6:337–341; 1986.

    PubMed  CAS  Google Scholar 

  30. Ono, K. The morphogenesis of the pancreas in the chicken. Acta. Anat. Nippon. 42:99–109; 1967.

    PubMed  CAS  Google Scholar 

  31. Pearse, A. G. E. Histochemistry. Theoretical and applied. Vol. 1. London: Churchill; 1968:601.

    Google Scholar 

  32. Pearse, A. G. E.; Polak, J. M. Bifunctional reagents as vapour and liquid phase fixatives for immunohistochemistry. Histochem. J. 7:179–186; 1975.

    Article  PubMed  CAS  Google Scholar 

  33. Perler, F.; Efstratiadis, A.; Lomedico, P., et al. The evolution of genes: the chicken preproinsulin gene. Cell 20:555–566; 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Popiela, H.; Moore, W. Proliferation of immunocytochemically identified islet beta cells in culture: effect of growth factors, hormones and nutrients. Pancreas 4:244–248; 1989.

    Article  PubMed  CAS  Google Scholar 

  35. Rabinovitch, A.; Quigley, C.; Russel, T., et al. Insulin and multiplication stimulating activity (an insulin-like growth factor) stimulate islet β-cell replication in neonatal rat pancreatic monolayer cultures. Diabetes 31:160–164; 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Rawdon, B. B. Preventing evaporation of antiserum during indirect immunocytochemical staining. Stain Technol. 53:289–290; 1978.

    PubMed  CAS  Google Scholar 

  37. Rawdon, B. B.; Andrew, A. An immunocytochemical study of the distribution of pancreatic endocrine cells in chicks, with special reference to the relationship between pancreatic polypeptide- and somatostatin-immunoreactive cells. Histochemistry 59:189–197; 1979.

    Article  PubMed  CAS  Google Scholar 

  38. Rawdon, B. B.; Andrew, A. An immunocytochemical survey of endocrine cells in the gastrointestinal tract of chicks at hatching. Cell Tissue Res. 220:279–292; 1981.

    Article  PubMed  CAS  Google Scholar 

  39. Reid, L. M.; Jefferson, D. M. Cell culture studies using extracts of extracellular matrix to study growth and differentiation in mammalian cells. In: Mather, J. P., ed. Mammalian cell culture: the use of serum-free hormone-supplemented media. New York: Plenum Press; 1984:239–280.

    Google Scholar 

  40. Rideau, N. Insulin secretion in birds. In: Leclercq, B.; Whitehead, C. C., eds. Leanness in domestic birds: genetic, metabolic and hormonal aspects. Great Britain: Butterworths; 1987:269–294.

    Google Scholar 

  41. Rideau, N.; Simon, J.; Leclercq, B. Further characterisation of insulin secretion from the perfused duodenum-pancreas of chicken: a comparison of insulin release in chickens selected for high and low abdominal fat content. Endocrinology 119:2635–2641; 1986.

    Article  PubMed  CAS  Google Scholar 

  42. Sanvito, F.; Herrera, P.-L.; Huarte, J., et al. TGF-beta 1 influences the relative development of the exocrine and endocrine pancreas in vitro. Development 120:3451–3462; 1994.

    PubMed  CAS  Google Scholar 

  43. Simon, J.; Leclercq, B. Longitudinal study of adiposity in chickens selected for high or low abdominal fat content: further evidence of a glucose-insulin imbalance in the fat line. J. Nutr. 112:1961–1973; 1982.

    PubMed  CAS  Google Scholar 

  44. Swenne, I. Glucose-stimulated DNA replication of the pancreatic islets during the development of the rat fetus: effects of nutrients, growth hormone and tri-iodothyronine. Diabetes 34:803–807; 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Swenne, I. Pancreatic beta-cell growth and diabetes mellitus. Diabetologia 35:193–201; 1992.

    Article  PubMed  CAS  Google Scholar 

  46. Swenne, I.; Bone, A. J.; Howell, S. L., et al. Effects of glucose and amino acids on the biosynthesis of DNA and insulin in fetal rat islets maintained in tissue culture. Diabetes 29:686–692; 1980.

    PubMed  CAS  Google Scholar 

  47. Swenne, I.; Heldin, C.-H.; Hill, D. J., et al. Effects of platelet-derived growth factor and somatomedin-C/insulin-like growth factor I on the deoxyribonucleic acid replication of foetal rat islets of Langerhans in tissue culture. Endocrinology 122:214–218; 1988.

    Article  PubMed  CAS  Google Scholar 

  48. Teitelman, G.; Alpert, S.; Polak, J. M., et al. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development 118:1031–1039; 1993.

    PubMed  CAS  Google Scholar 

  49. Upchurch, B. H.; Aponte, G. W.; Leiter, A. B. Expression of peptide YY in all four islet cell types in the developing-mouse pancreas suggests a common peptide YY-producing progenitor. Development 120:245–252; 1994.

    PubMed  CAS  Google Scholar 

  50. Vukicevic, S.; Kleinman, H. K.; Luyten, F. P., et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202:1–8; 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rawdon, B.B., Andrew, A. Development of embryonic chick insulin cells in culture: Beneficial effects of serum-free medium, raised nutrients, and biomatrix. In Vitro Cell.Dev.Biol.-Animal 33, 774–782 (1997). https://doi.org/10.1007/s11626-997-0156-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0156-5

Key words

Navigation