Skip to main content
Log in

Failure of insulin cells to develop in cultured embryonic chick pancreas: A model system for the detection of factors supporting insulin cell differentiation

  • Growth, Differentiation, And Senescence
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Little being known about factors necessary for insulin cell differentiation, we tested the chance observation that these cells were virtually absent from collagen gel cultures of embryonic avian pancreas in which the other pancreatic endocrine cells were numerous. Five-day dorsal buds stripped of their enveloping mesenchyme were embedded in gel and overlaid by a defined medium containing serum, then cultured for 7 days. Immunocytochemical evaluation showed a very low proportion of insulin cells. Substitution of the gel by a polyamino acid coating slightly increased the proportion. In an attempt to test for ability of insulin cell formation to recover, we transferred explants first cultured in collagen gel to polyamino-acid-coated dishes for a further 7 days. No improvement resulted. In controls grown for 14 days on a polyamino acid coating, insulin cells disappeared completely. We conclude that collagen gel does not support survival and differentiation of chick embryonic insulin cells and that the medium used is lacking in some essential factor(s). Determination of their identity should prove possible by exploitation of this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, R.; Varon, S. Neuritic guidance by polyornithine-attached material of ganglionic origin. Dev. Biol. 81:1–11; 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Amory, B.; Mourmeaux, J. L.; Remacle, C. In vitro cytodifferentiation of perinatal rat islet cells within a tridimensional matrix of collagen. In Vitro Cell. Dev. Biol. 24:91–99; 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Andrew, A.; Rawdon, B. B.; Kramer, B. Differentiation of intestinal and ectopic endocrine cells from avian gastric and pancreatic endoderm. Cell Differ. 22:135–144; 1988.

    Article  PubMed  CAS  Google Scholar 

  4. Bell, E.; Sher, S.; Hull, B., et al. The reconstitution of living skin. J. Invest. Dermatol. 81:2s-10s; 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Bissell, M. J.; Barcellos-Hoff, M. H. The influence of extracellular matrix on gene expression: is structure the message? J. Cell Sci. Suppl. 8:327–343; 1987.

    PubMed  CAS  Google Scholar 

  6. Bunnag, S. C. Postnatal neogenesis of islets of Langerhans in the mouse. Diabetes 15:480–491; 1966.

    PubMed  CAS  Google Scholar 

  7. Cowap, J. The first appearance of endocrine cells in the splenic lobe of the embryonic chick pancreas. Gen. Comp. Endocrinol. 60:131–137; 1985.

    Article  PubMed  CAS  Google Scholar 

  8. Dockray, G. J. Cholecystokinin-like peptides in avian brain and gut. Experientia 35:628–629; 1979.

    Article  PubMed  CAS  Google Scholar 

  9. Durban, E. M.; Medina, D.; Butel, J. S. Comparative analysis of casein synthesis during mammary cell differentiation in collagen and mammary gland development in vitro. Dev. Biol. 109:288–289; 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Elsdale, T.; Bard, J. Collagen substrata for studies on cell behaviour. J. Cell. Biol. 54:626–637; 1972.

    Article  PubMed  CAS  Google Scholar 

  11. Emerman, J. T.; Pitelka, D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 13:316–328; 1977.

    Article  PubMed  CAS  Google Scholar 

  12. Epple, A.; Brinn, J. E. The comparative physiology of the pancreatic islets. Zoophysiology 21. Berlin: Springer-Verlag; 1987:71.

    Google Scholar 

  13. Hamamoto, S.; Imagawa, W.; Yang, J., et al. Morphogenesis of mouse mammary epithelial cells growing within collagen gels: ultrastructural and immunocytochemical characterization. Cell Differ. 22:191–202; 1988.

    Article  PubMed  CAS  Google Scholar 

  14. Hamburger, V.; Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88:49–92; 1951.

    Article  Google Scholar 

  15. Karst, W.; Merker, H.-J. The differentiation behaviour of MDCK cells grown on matrix components and in collagen gels. Cell Differ. 22:211–224; 1988.

    Article  PubMed  CAS  Google Scholar 

  16. Kirkland, S. C. Polarity and differentiation of human rectal adenocarcinoma cells in suspensions and collagen gel cultures. J. Cell Sci. 91:615–621; 1988.

    PubMed  Google Scholar 

  17. Lillie, J. H.; MacCullum, D. K.; Jepson, A. Fine structure of subcultivated stratified squamous epithelium grown on collagen rafts. Exp. Cell Res. 125:153–165; 1980.

    Article  PubMed  CAS  Google Scholar 

  18. McEvoy, R. C. Fetal rat pancreas in organ culture: effects of serum on the development of the endocrine cells. Differentiation 17:105–109; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Millard, P. R.; Reece-Smith, H.; Clark, A., et al. The long-term allografted rat islet. A histologic and immunohistologic study. Am. J. Pathol. 111:166–173; 1983.

    PubMed  CAS  Google Scholar 

  20. Montesano, R.; Mouron, P.; Amherdt, M., et al. Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids. J. Cell Biol. 97:935–939; 1983.

    Article  PubMed  CAS  Google Scholar 

  21. Mourmeaux, J. L.; Remacle, C.; Henquin, J. C. Morphological and functional characteristics of islets neoformed during tissue culture of fetal rat pancreas. Mol. Cell. Endocrinol. 39:237–246; 1985.

    Article  PubMed  CAS  Google Scholar 

  22. Muschel, R.; Khoury, G.; Reid, L. M. Regulation of insulin mRNA abundance and adenylation: dependence on hormones and matrix substrata. Mol. Cell. Biol. 6:337–341; 1986.

    PubMed  CAS  Google Scholar 

  23. Nielsen, J. H. Effects of growth hormone, prolactin, and placental lactogen on insulin content and release, and deoxyribonucleic acid synthesis in cultured pancreatic islets. Endocrinology 100:600–606; 1982.

    Article  Google Scholar 

  24. Nielsen, J. H.; Linde, S.; Welinder, B. S., et al. Growth hormone is a growth factor for the differentiatedβ-cell. Mol. Endocrinol. 13:165–173; 1989.

    Article  Google Scholar 

  25. Ono, K. The morphogenesis of the pancreas in the chicken. Acta. Anat. Nippon 42:99–109; 1967.

    PubMed  CAS  Google Scholar 

  26. Pearse, A. G. E.; Polak, J. M. Bifunctional reagents as vapour and liquid phase fixatives for immunohistochemistry. Histochem. J. 7:179–186; 1975.

    Article  PubMed  CAS  Google Scholar 

  27. Pictet, R. L.; Rall, L.; de Gasparo, M., et al. Regulation of differentiation of endocrine cells during pancreatic development in vitro. In: Camerini-Davalos, R. A.; Cole, H. S., eds. Early diabetes in early life. New York: Academic Press; 1975:25–39.

    Google Scholar 

  28. Pictet, R. L.; Rutter, W. J. The molecular basis of the mesenchymal-epithelial interactions in pancreatic development. In: Karkinen-Jaaskelainen, M.; Saxen, L.; Weiss, L., eds. Cell interactions in differentiation. London: Academic Press; 1977:339–350.

    Google Scholar 

  29. Rabinovitch, A.; Russel, T.; Mintz, D. H. Factors from fibroblasts promote pancreatic islet B cell survival in tissue culture. Diabetes 28:1108–1113; 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Rahier, J.; Goebbels, R. M.; Henquin, J. C. Cellular composition of the human diabetic pancreas. Diabetologia 24:366–371; 1983.

    Article  PubMed  CAS  Google Scholar 

  31. Rawdon, B. B. Extension of sympathetic neurites in vitro towards explants of embryonic and neonatal mouse heart and stomach: ontogeny of neuronotrophic factors. Brain Res. Dev. Brain Res. 59:49–58; 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Rawdon, B. B. Preventing evaporation of antiserum during indirect immunocytochemical staining. Stain Technol. 53:289–290; 1978.

    PubMed  CAS  Google Scholar 

  33. Rawdon, B. B.; Andrew, A. An immunocytochemical study of the distribution of pancreatic endocrine cells in chicks, with special reference to the relationship between pancreatic polypeptide- and somatostatin-immunoreactive cells. Histochemistry 59:189–197; 1979.

    Article  PubMed  CAS  Google Scholar 

  34. Rawdon, B. B.; Andrew, A. An immunocytochemical survey of endocrine cells in the gastrointestinal tract of chicks at hatching. Cell Tissue Res. 220:279–292; 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Rawdon, A.; Rawdon, B. B.; Andrew, A. The ultrastructure of glucagon-immunoreactive cells in the gut and pancreas of newly-hatched chicks. Proc. Electron Microsc. Soc. South. Afr. 14:117–118; 1984.

    Google Scholar 

  36. Ronzio, R. A.; Rutter, W. J. Effects of a partially purified factor from chicken embryos on macromolecular synthesis of embryonic pancreatic epithelia. Dev. Biol. 30:307–320; 1973.

    Article  PubMed  CAS  Google Scholar 

  37. Rosenberg, L.; Vinik, A. Induction of endocrine cell differentiation: a new approach to management of diabetes. J. Lab. Clin. Med. 114:75–83; 1989.

    PubMed  CAS  Google Scholar 

  38. Swenne, I. Pancreatic beta-cell growth and diabetes mellitus. Diabetologia 35:193–201; 1992.

    Article  PubMed  CAS  Google Scholar 

  39. Tze, W. J.; Tai, J. Allotransplantation of dispersed single pancreatic endocrine cells in diabetic rats. Diabetes 37:383–392; 1988.

    Article  PubMed  CAS  Google Scholar 

  40. Yanaihara, N.; Yanaihara, C.; Nagai, K., et al. Motilin immunoreactivity in porcine, canine, human and rat tissues. Biomed. Res. 1:76–83; 1980.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrew, A., Rawdon, B.B. & Alison, B.C. Failure of insulin cells to develop in cultured embryonic chick pancreas: A model system for the detection of factors supporting insulin cell differentiation. In Vitro Cell Dev Biol - Animal 30, 664–670 (1994). https://doi.org/10.1007/BF02631269

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631269

Key words

Navigation