Skip to main content
Log in

Differences in nucleotide effects on intracellular pH, Na+/H+ antiport activity, and ATP-binding proteins in endothelial cells

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Bovine (BPAEC) and human (HPAEC) pulmonary artery endothelial cell monolayers were incubated with either ATP, ATP analogues, or UTP, followed by measurement of intracellular pH (pHi) and the rate of recovery from acidosis. ATP increased baseline pHi and the rate of acid recovery in BPAEC. This response was inhibited by the amiloride analogue, methyisobutylamiloride, demonstrating that activation of the Na+/H+ antiport was responsible for the increase in baseline pHi and the recovery from acidosis. This response had the features of both a P2Y and P2U purinergic receptor, based on the responses to a series of ATP analogues and UTP. In contrast, none of the nucleotides had any significant effect on pHi and Na+/H+ antiport activity in HPAEC. This difference in the response to extracellular nucleotides was not due to a difference in ATP metabolism between cell types, since the ectonucleotidase-resistant analogue, ATPγS, also had no effect on HPAEC. Analogues of cAMP had no effect on pHi or acid recovery in either cell type. Incubation of BPAEC and HPAEC with the photoaffinity ligand [32P] 8-AzATP indicated that both BPAEC and HPAEC possess an ATP-binding protein of 48 kDa. However, BPAEC exhibited an additional binding protein of 87 kDa. Thus, the contrasting response to extracellular ATP between bovine and human pulmonary artery endothelial cells may be related to differences in the signal transduction pathway leading to antiport activation, including different ATP-binding sites on the cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbracchio, M. P.; Burnstock, F. Purinoceptors: are there families of P2x and P2y purinoceptors? Pharmacol. & Ther. 64:445–475; 1994.

    Article  CAS  Google Scholar 

  2. Batlle, D. C.; Peces, R.; LaPointe, M. S., et al. Cytosolic free calcium regulation in response to acute changes in intracellular pH in vascular smooth muscle. Am. J. Physiol. (Cell Physiol.) 264:C932-C943; 1993.

    CAS  Google Scholar 

  3. Bo, X.; Simon, J.; Burnstock, G., et al. Solubilization and molecular size determination of the P2x purinoceptor from rat vs. deferens. J. Biol. Chem. 267:17581–17587; 1990.

    Google Scholar 

  4. Boyer, J. L.; Cooper, C. L.; Harden, T. K. [32P]3′-O-(4-benzoyl)benzoyl ATP as a photoaffinity label for a phospholipase C-coupled P2Y purinergic receptor. J. Biol. Chem. 265:13515–13520; 1990.

    PubMed  CAS  Google Scholar 

  5. Bussolino, F.; Wang, J. M.; Turrini, F., et al. Simulation of the Na+/H+ exchanger in human endothelial cells activated by granulocyte and granulocyte-macrophage-colony-stimulating factor. J. Biol. Chem. 264:18264–18287; 1989.

    Google Scholar 

  6. Chandler, A. Regulation of lung surfactant secretion by intracellular pH. Am. J. Physiol. 257:L354-L360; 1989.

    Google Scholar 

  7. Clark, J. D.; Limbird, L. E. Na+/H+ exchanger subtypes: a predictive review. Am. J. Physiol. (Cell Physiol.) 261:C945-C953; 1991.

    CAS  Google Scholar 

  8. Cutaia, M. V.; Parks, N. Oxidant stress decreases Na+/H+ antiport activity in bovine pulmonary artery endothelial cells. Am. J. Physiol. (Lung Cell Mol. Physiol.) 267:L649-L659; 1994.

    CAS  Google Scholar 

  9. Dawicki, D. D.; McGowan-Jordan, J.; Bullard, S., et al. Extracellular nucleotides stimulate leukocyte adherence to cultured pulmonary artery endothelial cells. Am. J. Physiol. (Lung Cell Mol. Physiol.) 268:L666-L673; 1995.

    CAS  Google Scholar 

  10. Dubyak, G. R. Signal transduction by P2-purinergic receptors for extracellular ATP. Am. J. Respir. Cell Mol. Biol. 4:295–300; 1991.

    PubMed  CAS  Google Scholar 

  11. Gerritsen, M. E.; Bloor, C. M. Endothelial cell gene expression in response to injury. FASEB J 7:523–532; 1993.

    PubMed  CAS  Google Scholar 

  12. Giannattasio, B.; Powers, K.; Scarpa, A. Characterization of myocardial extracellular ATP receptors by photoaffinity labelling and functional assays. FEBS Lett. 304:27–31; 1992.

    Article  CAS  Google Scholar 

  13. Huang, N.; Wang, K.; Heppel, L. A. Stimulation of aged human lung fibroblasts by extracellular ATP via suppression of arachidonate metabolism. J. Biol. Chem. 268:10789–10795; 1993.

    PubMed  CAS  Google Scholar 

  14. Kitazono, T.; Takeshige, K.; Cragoe, E. J. J., et al. Intracellular pH changes of cultured bovine aortic endothelial cells in response to ATP addition. Biochem. Biophys. Res. Comm. 152:1304–1309; 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Kitazono, T.; Takeshige, K.; Cragoe, E. J., et al. Involvement of calcium and protein kinase C in the activation of the Na+/H+ exchanger in cultured bovine aortic endothelial cells stimulated by extracellular ATP. Biochim. Biophys. Acta 1013:152–158; 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Kitazono, T.; Takeshige, K.; Minakami, S. Activation of cultured bovine aortic endothelial cells by extracellular pyrimidine triphosphate. Int. J. Biochem. 24:1323–1327; 1992.

    Article  PubMed  CAS  Google Scholar 

  17. Laemmli, U. K. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  18. Lustig, K. D.; Shiau, A. K.; Brake, A. J., et al. Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc. Natl. Acad. Sci. 90:5113–5117; 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Motte, S.; Pirotton, S.; Boeynaems, J. M. Heterogeneity of ATP receptors in aortic endothelial cells: involvement of P2Y and P2U receptors in inositol phosphate response. Circ. Res. 72:504–510; 1993.

    PubMed  CAS  Google Scholar 

  20. Na+/H+ Exchange. Grinstein, S., ed. Boca Raton, FL: CRC Press; 1988.

    Google Scholar 

  21. Pirotton, S.; Motte, S.; Cote, S., et al. Control of endothelial function by nucleotides: multiple receptors and transduction mechanisms. Cell. Signalling 5:1–8; 1993.

    Article  PubMed  CAS  Google Scholar 

  22. Ryan, U. S.; Clements, E.; Habliston, D., et al. Isolation and culture of pulmonary artery endothelial cells. Tissue & Cell. 10:535–554; 1978.

    CAS  Google Scholar 

  23. Thomas, J. A.; Buschbaum, R. N.; Zimniak, A., et al. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218; 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Tse, M.; Levine, S.; Yun, C., et al. Structure/function studies of epithelial isoforms of mammalian Na+/H+ exchanger gene family. J. Membr. Biol. 135:93–105; 1993.

    PubMed  CAS  Google Scholar 

  25. Wilkinson, G. F.; Purkiss, J. R.; Boarder, M. R. The regulation of aortic endothelial cells by purines and pyrimidines involves co-existing P2Y purinoceptors and nucleotide receptors linked to phospholipase C. Br. J. Pharmacol. 108:689–693; 1993.

    PubMed  CAS  Google Scholar 

  26. Xing, M.; Thevenod, F.; Mattera, R. Dual regulation of arachidonic acid release by P2U purinergic receptors in dibutyryl cyclic AMP-differentiated HL60 cells. J. Biol. Chem. 267:6602–6610; 1992.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cutaia, M., Dawicki, D.D., Papazian, L.M. et al. Differences in nucleotide effects on intracellular pH, Na+/H+ antiport activity, and ATP-binding proteins in endothelial cells. In Vitro Cell.Dev.Biol.-Animal 33, 608–614 (1997). https://doi.org/10.1007/s11626-997-0110-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0110-6

Key words

Navigation