Skip to main content

Advertisement

Log in

Clock genes are expressed in cementum and regulate the proliferation and mineralization of cementoblasts

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Circadian clock genes are present in the ameloblasts, odontoblasts, and dental pulp cells. The cementum plays a vital role in connecting the roots of teeth to the alveolar bone by anchoring the periodontal ligament. The present study aimed at confirming the existence of clock genes and describing the potential regulatory effects of REV-ERBα in the cementum. The tooth-periodontal ligament-alveolar bone complexes of 6-week-old mice were analyzed using immunohistochemistry. OCCM-30 cells, an immortalized cementoblast cell line, were synchronized with dexamethasone. We used RT-PCR to detect the expression of clock genes in the absence or presence of SR8278, an effective antagonist of REV-ERBα. We performed a cell counting kit-8 (CCK-8) assay to determine the effect of SR8278 on cell proliferation. RT-PCR and Western blot were used to measure the expression of mineralization-related markers in mineralization-induced OCCM-30 cells, with or without SR8278 treatment. Finally, we used Alizarin red staining, and ALP staining and activity to further verify the effect of SR8278 on mineralization of OCCM-30 cells on macro-level. In our study, clock protein expression was confirmed in the murine cementum. Clock genes were shown to oscillate continuously in OCCM-30 cells. SR8278-induced inactivation of REV-ERBα inhibited the proliferation but promoted the mineralization of OCCM-30 cells. The present study confirmed the presence of clock genes in the cementum, where they potentially participate in cell proliferation and mineralization. Our findings may inspire new research directions for periodontal regeneration via clock gene manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Aschoff J, Pohl H (1978) Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65:80–84

    Article  CAS  PubMed  Google Scholar 

  • Athanassiou-Papaefthymiou M, Kim D, Harbron L, Papagerakis S, Schnell S, Harada H, Papagerakis P (2011) Molecular and circadian controls of ameloblasts. Eur J Oral Sci 119(Suppl 1):35–40

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Z, Zhang H, Zhou X, Han X, Ren Y, Gao T, Xiao Y, de Crombrugghe B, Somerman MJ, Feng JQ (2012) Genetic evidence for the vital function of Osterix in cementogenesis. J Bone Miner Res 27:1080–1092

    Article  CAS  PubMed  Google Scholar 

  • Chauhan A, Lorenzen S, Herzel H, Bernard S (2011) Regulation of mammalian cell cycle progression in the regenerating liver. J Theor Biol 283:103–112

    Article  PubMed  Google Scholar 

  • Chen G, Tang Q, Yu S, Xie Y, Sun J, Li S, Chen L (2020) The biological function of BMAL1 in skeleton development and disorders. Life Sci 253:117636

    Article  CAS  PubMed  Google Scholar 

  • Crumbley C, Burris TP (2011) Direct regulation of CLOCK expression by REV-ERB. PLoS One 6:e17290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Errico JA, Berry JE, Ouyang H, Strayhorn CL, Windle JJ, Somerman MJ (2000) Employing a transgenic animal model to obtain cementoblasts in vitro. J Periodontol 71:63–72

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96:271–290

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350–361

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Wang M, Zhu G, Zhao Z, Sun H, Cao Z, Xia H (2022) REV-ERBs negatively regulate mineralization of the cementoblasts. Biochem Biophys Res Commun 587:9–15

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Shen O, Han J, Duan H, Yang S, Zhu Z, Tong J, Zhang J (2017) Circadian rhythm genes mediate fenvalerate-induced inhibition of testosterone synthesis in mouse Leydig cells. J Toxicol Environ Health A 80:1314–1320

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377

    Article  CAS  PubMed  Google Scholar 

  • He Y, Lin F, Chen Y, Tan Z, Bai D, Zhao Q (2015) Overexpression of the circadian clock gene rev-erbalpha affects murine bone mesenchymal stem cell proliferation and osteogenesis. Stem Cells Dev 24:1194–1204

    Article  CAS  PubMed  Google Scholar 

  • Janjic K, Kurzmann C, Moritz A, Agis H (2018) Core circadian clock gene expression in human dental pulp-derived cells in response to L-mimosine, hypoxia and echinomycin. Eur J Oral Sci 126:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karpowicz P, Zhang Y, Hogenesch JB, Emery P, Perrimon N (2013) The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 3:996–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, de la Pena JB, Cheong JH, Kim HJ (2018) Neurobiological functions of the period circadian clock 2 gene, Per2. Biomol Ther (Seoul) 26:358–367

    Article  CAS  PubMed  Google Scholar 

  • Kojetin D, Wang Y, Kamenecka TM, Burris TP (2011) Identification of SR8278, a synthetic antagonist of the nuclear heme receptor REV-ERB. ACS Chem Biol 6:131–134

    Article  CAS  PubMed  Google Scholar 

  • Koshi R, Matsumoto K, Imanishi Y, Kawato T, Sato S, Shimba S, Arai Y, Honda K (2020) Morphological characteristics of interalveolar septum and mandible in BMAL1 gene knockout mice. J Oral Sci 63:83–86

    Article  PubMed  Google Scholar 

  • Li X, Liu N, Gu B, Hu W, Li Y, Guo B, Zhang D (2018) BMAL1 regulates balance of osteogenic-osteoclastic function of bone marrow mesenchymal stem cells in type 2 diabetes mellitus through the NF-kappaB pathway. Mol Biol Rep 45:1691–1704

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Zhou Y,  Chen Y, Liu Y, Peng S, Cao Z, Xia H (2022) Bmal1 promotes cementoblast differentiation and cementum mineralization via Wnt/β-catenin signaling. Acta Histochemica 124(3):151868-S0065128122000277 151868. https://doi.org/10.1016/j.acthis.2022.151868

  • Millar AJ (2016) The intracellular dynamics of circadian clocks reach for the light of ecology and evolution. Annu Rev Plant Biol 67:595–618

    Article  CAS  PubMed  Google Scholar 

  • Min HY, Kim KM, Wee G, Kim EJ, Jang WG (2016) Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci 162:41–46

    Article  CAS  PubMed  Google Scholar 

  • Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL (2009) A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One 4:e4798

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan S, Deng Y, Fu J, Zhang Y, Zhang Z, Ru X, Qin X (2019) TRIM52 promotes colorectal cancer cell proliferation through the STAT3 signaling. Cancer Cell Int 19:57

    Article  PubMed  PubMed Central  Google Scholar 

  • Papakyrikos AM, Arora M, Austin C, Boughner JC, Capellini TD, Dingwall HL, Greba Q, Howland JG, Kato A, Wang XP, Smith TM (2020) Biological clocks and incremental growth line formation in dentine. J Anat 237:367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin X, Li Q, Chen W, Bai Y, Baban B, Mao J (2019) The circadian expression of osteogenic factors in periodontal tissue loading mechanical force: new concepts of the personalized orthodontic care. EPMA J 10:13–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nat 418:935–941

    Article  CAS  Google Scholar 

  • Ripperger JA (2006) Mapping of binding regions for the circadian regulators BMAL1 and CLOCK within the mouse Rev-erbalpha gene. Chronobiol Int 23:135–142

    Article  PubMed  Google Scholar 

  • Samsa WE, Vasanji A, Midura RJ, Kondratov RV (2016) Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84:194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  CAS  PubMed  Google Scholar 

  • Schibler U (2021) BMAL1 dephosphorylation determines the pace of the circadian clock. Genes Dev 35:1076–1078

    Article  PubMed  PubMed Central  Google Scholar 

  • Sculean A, Chapple IL, Giannobile WV (2015) Wound models for periodontal and bone regeneration: the role of biologic research. Periodontol 2000 68:7–20

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi JS (2017) Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet 18:164–179

    Article  CAS  PubMed  Google Scholar 

  • Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S, Kodama A, Shimba S, Mieda M, Fukasawa K, Ozaki K, Iezaki T, Fujikawa K, Yoneda Y, Numano R, Hida A, Tei H, Takeda S, Hinoi E (2017) Bone resorption is regulated by circadian clock in osteoblasts. J Bone Miner Res 32:872–881

    Article  CAS  PubMed  Google Scholar 

  • Tang Q, Cheng B, Xie M, Chen Y, Zhao J, Zhou X, Chen L (2017) Circadian clock gene Bmal1 inhibits tumorigenesis and increases paclitaxel sensitivity in tongue squamous cell carcinoma. Cancer Res 77:532–544

    Article  CAS  PubMed  Google Scholar 

  • Tonna EA, Singh IJ, Sandhu HS (1987) Autoradiographic investigation of circadian rhythms in alveolar bone periosteum and cementum in young mice. Histol Histopathol 2:129–133

    CAS  PubMed  Google Scholar 

  • Trott AJ, Menet JS (2018) Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet 14:e1007156

    Article  PubMed  PubMed Central  Google Scholar 

  • Ukai-Tadenuma M, Kasukawa T, Ueda HR (2008) Proof-by-synthesis of the transcriptional logic of mammalian circadian clocks. Nat Cell Biol 10:1154–1163

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Su G, Dai Z, Meng M, Zhang H, Fan F, Liu Z, Zhang L, Weygant N, He F, Fang N, Zhang L, Cheng Q (2021) Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif 54:e12988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Lazar MA (2005) The orphan nuclear receptor Rev-erbalpha recruits the N-CoR/histone deacetylase 3 corepressor to regulate the circadian Bmal1 gene. Mol Endocrinol 19:1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Li Y, Zhou L, Yang G, Wang M, Hong Y (2018) Cryptochrome 2 (CRY2) Suppresses proliferation and migration and regulates clock gene network in osteosarcoma cells. Med Sci Monit 24:3856–3862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng L, Papagerakis S, Schnell SD, Hoogerwerf WA, Papagerakis P (2011) Expression of clock proteins in developing tooth. Gene Expr Patterns 11:202–206

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Seon YJ, Mourao MA, Schnell S, Kim D, Harada H, Papagerakis S, Papagerakis P (2013) Circadian rhythms regulate amelogenesis. Bone 55:158–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Yu Y, Sun S, Zhang T, Wang M (2018) Cry 1 Regulates the clock gene network and promotes proliferation and migration via the Akt/P53/P21 pathway in human osteosarcoma cells. J Cancer 9:2480–2491

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Planning Project of Innovation and Entrepreneurship Training of Wuhan University (Grant No. W2021304004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhe Hu or Haibin Xia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Sun, Q., Wu, X. et al. Clock genes are expressed in cementum and regulate the proliferation and mineralization of cementoblasts. In Vitro Cell.Dev.Biol.-Animal 59, 76–84 (2023). https://doi.org/10.1007/s11626-023-00748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-023-00748-4

Keywords

Navigation