Skip to main content
Log in

Inhibition of palmitic acid induced adipogenesis by natural polyphenols in 3T3-L1 adipocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Dietary free fatty acids induce preadipocyte differentiation in the presence of a hormonal cocktail in 3T3-L1 adipocytes. Plant polyphenols are curb adipocyte differentiation and protect from metabolic stress. In the present study, we examined the effects of the saturated fatty acid, palmitic acid (PA) in presence of flavonoids, chrysin (CR) and hesperidin (HD) and phenolic acid, syringic acid (SYA) and sinapic acid (SIA). Adipocytes were incubated for 10 d with 100 μmol of PA along with 10–100 µmol CR/HD and 100–1000 µmol SYA/SIA. PA induced clonal expansion of preadipocytes, differentiation and oxidative stress in 3T3-L1 cells following 10 d of differentiation. Adipocytes treated with PA exhibited an increase of 300% in clonal population, 110% lipid and 172% reactive oxygen species accumulation. But treatment with CR, HD, SYA and SIA in the presence of PA concentration–dependent effect was observed. Concentrations of CR/HD and SYA/SIA inhibited PA-induced mRNA expression of PPARγ, C/EBPα, SREBP-1c, FAS and NOX4. Moreover, CR, HD, SYA and SIA did not exhibit toxicity in Drosophila DNA. In summary, these results suggest that dietary fatty acids act directly on adipocytes and addition of CR, HD, SYA and SIA resulted in reduction of PA-induced negative effects on 3T3-L1 adipocytes.

Highlights

• Palmitic acid, the common dietary free fatty acid, is known to induce adipogenesis in 3T3-L1 adipocytes.

• Treatment of differentiating adipocytes with flavonoids and phenolic acids reduced palmitic acid–induced clonal expansion of preadipocytes.

• Phytocompounds reduced lipid accumulation and triglyceride production as well as ROS accumulation.

• Thus, the phytocompounds showed effective anti-adipogenic activity even in palmitic acid challenged environment in adipocytes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  • Adachi T, Toishi T, Wu H, Kamiya T, Hara H (2009) Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Rep 14(1):34–40

    Article  CAS  PubMed  Google Scholar 

  • Ahirwar R, Mondal PR (2019) Prevalence of obesity in India: a systematic review. Diabtes Metab Syndr 13(1):318–321

    Article  Google Scholar 

  • Amri EZ, Ailhaud G, Grimaldi PA (1994) Fatty acids as signal transducing molecules: involvement in the differentiation of preadipose to adipose cells. J Lipid Res 35(5):930–937

    Article  CAS  PubMed  Google Scholar 

  • Andersen C, Rayalam S, Della-Ferra M, Baile CA (2010) Phytochemicals and adipogenesis. BioFactors 36(6):415–422

    Article  CAS  PubMed  Google Scholar 

  • Arya A, Nahar L, Khan HU, Sarker SD (2020) Chapter thirteen - anti-obesity natural products. In: Sarker S.D., Nahar L (eds) Medicinal Natural Products: A Disease-Focused Approach. Academic Press (Annual Reports in Medicinal Chemistry) pp 411–433

  • Bays H, Mandarino L, DeFronzo RA (2004) Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J Clin Endocrinol Metab 89(2):463–478

    Article  CAS  PubMed  Google Scholar 

  • Beeharry N, Chambers JA, Green IC (2004) Fatty acid protection from palmitic acid-induced apoptosis is lost following PI3-kinase inhibition. Apoptosis 9(5):599–607

    Article  CAS  PubMed  Google Scholar 

  • Björntorp P, Bergman H, Varnauskas E (1969) Plasma free fatty acid turnover rate in obesity. Acta Med Scand 185(4):351–356

    PubMed  Google Scholar 

  • Boden G (2008) Obesity and Free Fatty Acids. Endocrinol Metab Clin North Am 37(2):635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bournat JC, Brown CW (2010) Mitochondrial dysfunction in obesity. Curr Opin Endocrinol Diabetes Obes 17(5):446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buettner R, Schölmerich J, Bollheimer LC (2007) High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15(4):798–808

    Article  CAS  PubMed  Google Scholar 

  • Carta G, Murru E, Banni S, Manca C (2017) Palmitic acid: physiological role, metabolism and nutritional implications. Front Physiol 8:902

    Article  PubMed  PubMed Central  Google Scholar 

  • Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278(12):10297–10303

    Article  CAS  PubMed  Google Scholar 

  • Chavez JA, Summers SA (2012) A ceramide-centric view of insulin resistance. Cell Metab 15(5):585–594

    Article  CAS  PubMed  Google Scholar 

  • Coutinho HDM, de Morais Oliveira-Tintino CD, Tintino SR, Pereira RLS, de Freitas TS, da Silva MAP, Franco JL, da Cunha FAB, da Costa JGM, de Menezes IRA, Boligon AA (2018) Toxicity against Drosophila melanogaster and antiedematogenic and antimicrobial activities of Alternanthera brasiliana (L.) Kuntze (Amaranthaceae). Environ Sci Pollut Res. 25(11):10353–10361

    Article  CAS  Google Scholar 

  • De Ferranti S, Mozaffarian D (2008) The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54(6):945–955

    Article  PubMed  CAS  Google Scholar 

  • Distel RJ, Robinson GS, Spiegelman BM (1992) Fatty acid regulation of gene expression. Transcriptional and post-transcriptional mechanisms. J Bio Chem 267(9):5937–5941

    Article  CAS  Google Scholar 

  • Domínguez-Avila JA, González-Aguilar GA, Alvarez-Parrilla E, de la Rosa LA (2016) Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets. Int J Mol Sci 17(7):1002

    Article  PubMed Central  CAS  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer SR (2005) Regulation of PPARgamma activity during adipogenesis. Int J Obes (Lond) Suppl 1:S13–S16

    Article  CAS  Google Scholar 

  • Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2017) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114(12):1752–1761

    Article  Google Scholar 

  • Gao CL, Zhu C, Zhao YP, Chen XH, Ji CB, Zhang CM, Zhu JG, Xia ZK, Tong ML, Guo XR (2010) Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol 320(1–2):25–33

    Article  CAS  PubMed  Google Scholar 

  • García-Barrado MJ, Iglesias-Osma MC, Pérez-García E, Carrero S, Blanco EJ, Carretero-Hernández M, Carretero J (2020) Role of flavonoids in the interactions among obesity, inflammation, and autophagy. Pharmaceuticals 13(11):342

    Article  PubMed Central  CAS  Google Scholar 

  • García-Escobar E, Monastero R, García-Serrano S, Gómez-Zumaquero JM, Lago-Sampedro A, Rubio-Martín E, Colomo N, Rodríguez-Pacheco F, Soriguer F, Rojo-Martínez G (2017) Dietary fatty acids modulate adipocyte TNFa production via regulation of its DNA promoter methylation levels. J Nutr Biochem 47:106–112

    Article  PubMed  CAS  Google Scholar 

  • Green H, Kehinde O (1975) An established preadipose cell line and its differentiation in culture II. Factors Affecting the Adipose Conversion Cell 5(1):19–27

    CAS  PubMed  Google Scholar 

  • Guo W, Wong S, Xie W, Lei T, Luo Z (2007) Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab 293(2):E576–E586

    Article  CAS  PubMed  Google Scholar 

  • Hassan M, El Yazidi C, Landrier JF, Lairon D, Margotat A, Amiot MJ (2007) Phloretin enhances adipocyte differentiation and adiponectin expression in 3T3-L1 cells. Biochem Biophys Res Commun 361(1):208–213

    Article  CAS  PubMed  Google Scholar 

  • Hariri N, Thibault L (2010) High-fat diet-induced obesity in animal models. Nutr Res Rev 23(2):270–299

    Article  CAS  PubMed  Google Scholar 

  • Harmon AW, Harp JB (2001) Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol Cell Physiol 280(4):49–54

    Article  Google Scholar 

  • Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13(10):572–584

    Article  CAS  PubMed  Google Scholar 

  • Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ, Stocker R, Van Remmen H, Kraegen EW, Cooney GJ, Richardson AR, James DE (2009) Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci 106(42):17787–17792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Innis SM, Dyer R (1997) Dietary triacylglycerols with palmitic acid (16:0) in the 2-position increase 16:0 in the 2-position of plasma and chylomicron triacylglycerols, but reduce phospholipid arachidonic and docosahexaenoic acids, and alter cholesteryl ester metabolism in formula-Fed piglets. J Nutr 127(7):1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM (1989) Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 83(4):1168–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L, Zhang NX, Mo W, Wan R, Ma CG, Li X, Gu YL, Yang XY, Tang QQ, Song HY (2008) Rehmannia inhibits adipocyte differentiation and adipogenesis. Biochem Biophys Res Commun 371(2):185–190

    Article  CAS  PubMed  Google Scholar 

  • John CM, Arockiasamy S (2020) Syringic acid (4-hydroxy-3, 5-dimethoxybenzoic acid) inhibits adipogenesis and promotes lipolysis in 3T3-L1 adipocytes. Nat Prod Res 34(23):3432–3436

    Article  CAS  PubMed  Google Scholar 

  • John CM, Arockiasamy S (2021a) 3, 5-Dimethoxy-4-benzoic acid (syringic acid) a natural phenolic acid reduces reactive oxygen species in differentiated 3T3-L1 adipocytes. In Vitro Cell Dev Biol Anim 57(4):386–394

    Article  CAS  PubMed  Google Scholar 

  • John CM, Arockiasamy S (2021b) "Enhanced inhibition of adipogenesis by chrysin via modification in redox balance , lipogenesis , and transcription factors in 3T3-L1 adipocytes in comparison with hesperidin. J Am Coll Nutr 1–13

  • Jornayvaz FR, Shulman GI (2012) Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance. Cell Metab 15(5):574–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Júnior FE, Macedo GE, Zemolin AP, Silva GFD, Cruz LCD, Boligon AA, de Menezes IR, Franco JL, Posser T (2016) Oxidant effects and toxicity of Croton campestris in Drosophila melanogaster. Pharm Biol 54(12):3068–3077

    Article  PubMed  Google Scholar 

  • Karpe F, Dickmann JR, Frayn KN (2011) Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes 60(10):2441–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kefalas P, Kallithraka S, Parejo I, Makris DP (2003) Note: a comparative study on the in vitro antiradical activity and hydroxyl free radical scavenging activity in aged red wines. Food Sci Technol Int 9(6):383–387

    Article  CAS  Google Scholar 

  • Kobayashi H, Matsuda M, Fukuhara A, Komuro R, Shimomura I (2009) Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. Am J Physiol Endocrinol Metab 296(6):E1326–E1334

    Article  CAS  PubMed  Google Scholar 

  • Koroleva O, Torkova A, Nikolaev I, Khrameeva E, Fedorova T, Tsentalovich M, Amarowicz R (2014) Evaluation of the antiradical properties of phenolic acids. Int J Mol. Sci. 15(9):16351–16380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krautbauer S, Eisinger K, Neumeier M, Hader Y, Buettner R, Schmid PM, Aslanidis C, Buechler C (2014) Free fatty acids, lipopolysaccharide and IL-1α induce adipocyte manganese superoxide dismutase which is increased in visceral adipose tissues of obese rodents. PLoS ONE 9(1):86866

    Article  CAS  Google Scholar 

  • Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr (2001) Ory DS, and Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276:14890–14895

    Article  CAS  PubMed  Google Scholar 

  • Lutz TA, Woods SC (2012) Overview of animal models of obesity. Curr Protoc Pharmacol 58(1):5–61

    Article  Google Scholar 

  • Malodobra-Mazur M, Cierzniak A, Dobosz T (2019) Oleic acid influences the adipogenesis of 3T3-L1 cells via DNA methylation and may predispose to obesity and obesity-related disorders. Lipids Health Dis 18(1):1–15

    Article  CAS  Google Scholar 

  • Miller TA, LeBrasseur NK, Cote GM, Trucillo MP, Pimentel DR, Ido Y, Ruderman NB, Sawyer DB (2005) Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem Biophys Res Commun 336(1):309–315

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Met 65(1–2):55–63

    Article  CAS  Google Scholar 

  • Muscarà C, Molonia MS, Speciale A, Bashllari R, Cimino F, Occhiuto C, Saija A, Cristani M (2019) Anthocyanins ameliorate palmitate-induced inflammation and insulin resistance in 3T3-L1 adipocytes. Phytother Res 33(7):1888–1897

    Article  PubMed  CAS  Google Scholar 

  • Pannala AS, Chan TS, O’Brien PJ, Rice-Evans CA (2001) Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun 282(5):1161–1168

    Article  CAS  Google Scholar 

  • Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O.". Histochemistry 97(6):493

    Article  CAS  PubMed  Google Scholar 

  • Razzaghi-Asl N, Garrido J, Khazraei H, Borges F, Firuzi O (2013) Antioxidant properties of hydroxycinnamic acids: a review of structure- activity relationships. Curr Med Chem 20(36):4436–4450

    Article  CAS  PubMed  Google Scholar 

  • Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11(6):1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Pérez C, Segura-Carretero A, del Mar Contreras M (2019) Phenolic compounds as natural and multifunctional anti-obesity agents: a review. Crit Rev Food Sci Nutr 59(8):1212–1229

    Article  PubMed  CAS  Google Scholar 

  • Samuel VT, Petersen KF, Shulman GI (2010) Lipid-induced insulin resistance: unravelling the mechanism. The Lancet 375(9733):2267–2277

    Article  CAS  Google Scholar 

  • Sette S, Ledonne C, Piccinelli R, Arcella D, Turrini A, Leclercq C, INRAN-SCAI 2005–06 Study Group (2011) The third Italian national food consumption survey, INRAN-SCAI 2005–06–part 1: nutrient intakes in Italy. Nutr Metab Cardiovasc Dis. 21(12):922–932

    Article  PubMed  Google Scholar 

  • Srivastava G, Apovian CM (2017) Current pharmacotherapy for obesity. Nat Rev Endocrinol 14(1):12–24

    Article  PubMed  CAS  Google Scholar 

  • Subauste AR, Burant CF (2007) Role of FoxO1 in FFA-induced oxidative stress in adipocytes. Am J Physiol Endocrinol Metab 293(1):E159–E164

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamaguchi S, Shimoyama T, Seki H, Miyokawa K, Katsuta H, Tanaka T, Yoshimoto K, Ohno H, Nagamatsu S, Ishida H (2008) JNK-and IκB-dependent pathways regulate MCP-1 but not adiponectin release from artificially hypertrophied 3T3-L1 adipocytes preloaded with palmitate in vitro. Am J Physiol Endocrinol Metab 294(5):E898–E909

    Article  CAS  PubMed  Google Scholar 

  • Tang QQ, Otto TC, Lane MD (2003a) CCAAT/enhancer-binding protein beta is required for mitotic clonal expansion during adipogenesis. Proc Natl Acad Sci 100(3):850–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang QQ, Otto TC, Lane MD (2003b) Mitotic clonal expansion: a synchronous process required for adipogenesis. Proc Natl Acad Sci 100(1):44–49

    Article  CAS  PubMed  Google Scholar 

  • Vallinayagam S, Rajendran K, Sekar V (2021) Pro-apoptotic property of phytocompounds from Naringi crenulata in HER2+ breast cancer cells in vitro. Biotechnol Biotechnol Equip 35(1):311–322

    Article  CAS  Google Scholar 

  • Venteclef N, Jakobsson T, Steffensen KR, Treuter E (2011) Metabolic nuclear receptor signaling and the inflammatory acute phase response. Trends Endocrinol Metab 22(8):333–343

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Chen Y, Xiong Z, Yu S, Zhou B, Ling Y, Zheng Z, Shi G, Wu Y, Qian X (2017) Ginsenoside Rb1 inhibits free fatty acids-induced oxidative stress and inflammation in 3T3-L1 adipocytes. Mol Med Rep 16(6):9165–9172

    Article  CAS  PubMed  Google Scholar 

  • Yeop Han C, Kargi AY, Omer M, Chan CK, Wabitsch M, O’Brien KD, Wight TN, Chait A (2010) Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes 59(2):386–396

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out in Department of Biomedical Sciences, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, 600116. The research was partially supported by Shri NPV Ramasamy Udayar Research Fellowship for PhD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumathy Arockiasamy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, C.M., Arockiasamy, S. Inhibition of palmitic acid induced adipogenesis by natural polyphenols in 3T3-L1 adipocytes. In Vitro Cell.Dev.Biol.-Animal 58, 396–407 (2022). https://doi.org/10.1007/s11626-022-00689-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00689-4

Keywords

Navigation