Skip to main content
Log in

Hemocytic cell line from the moth Glyphodes pyloalis (Lepidoptera: Crambidae) response to essential oils from Artemisia annua (Asterales: Asteraceae)

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Extensive usage of synthetic chemical pesticides has collateral effects in harming human and animal health and the environment and promoting the development of resistance in pests. The potential of plant compounds as bio insecticides has been described as a promising field of agricultural development. The present study involved the use of Artemisia annua essential oils to evaluate their cytotoxic activities against an established cell line of lesser mulberry pyralid. Five types of hemocytes were recognized (prohaemocytes, plasmatocytes, granulocytes, oenocytoids, and spherulocytes) in the primary cultures maintained in Ex-Cell media with 10% fetal bovine serum (FBS). Artemisia annua essential oils produced noticeable cytotoxicity against the insect cell lines. Applied at a concentration 500 ppm, oils extracted from the vegetative or flowering stages of A. annua produced 71% and 80% cell death, respectively. Nanoemulsions of EOs from the vegetative or flowering stages of A. annua killed 67 and 60% of the cells, respectively. This study has clearly shown significant bioactivities of A. annua secondary metabolites to insect cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ajamhassani M, JalaliSendi J, Zibaee A, Askary H, Farsi MJ (2013) Immunoliogical responses of Hyphantria Cunea (Drury) (Lepidoptera: Arctiidae) to entomopathogenic fungi, Beauveria Bassiana (Bals.-Criy) and Isaria Farinosae (Holmsk.) Fr. J Plant Prot Res 53:110–118. https://doi.org/10.2478/jppr-2013-0016

    Article  Google Scholar 

  • Aljabr AM, Rizwan-ul-Haq M, Hussain A (2014) Establishing midgut cell culture from Rhynchophorus ferrugineus (Olivier) and toxicity assessment against ten different insecticides. In Vitro Cell Dev Biol Anim 50:296–303. https://doi.org/10.1007/s11626-013-9694-1

    Article  CAS  PubMed  Google Scholar 

  • Amoabeng BW, Stevenson PC, Pandey S, Mochiah MB, Gurr MG (2018) Insecticidal activity of a native Australian tobacco, Nicotiana megalosiphon Van Heurck & Muell. Arg. (Solanales: Solanaceae) against key insect pests of brassicas. Crop Prot 106:6–12. https://doi.org/10.1016/j.cropro.2017.11.018

    Article  Google Scholar 

  • Bilia AR, Santomauro F, Sacco C, Bergonzi, MC, Donato R (2014) Essential oil of Artemisia annua L.: an extraordinary component with numerous antimicrobial properties. Evidence-Based Complementary and Alternative Medicine, article ID 159819, 7. 230. https://doi.org/10.1155/2014/15981

  • Chen Y, Luo J, Zhang N, Yu W, Jiang J, Dai G (2021) Insecticidal activities of Salvia hispanica L. essential oil and combinations of their main compounds against the beet armyworm Spodoptera exigua. Ind Crops Prod 162:113271. https://doi.org/10.1016/j.indcrop.2021.113271

    Article  CAS  Google Scholar 

  • Choi MY, Vander Meer RK (2021) GPCR-based bioactive peptide screening using phage-displayed peptides and an insect cell system for insecticide discovery. Biomolecules 11(4):583. https://doi.org/10.3390/biom11040583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deb M, Kumar D (2020) Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium casteneum (Herbst. 1797) (Coleoptera: Tenebrionidae): an eco-friendly approach. Ecotoxicol Environ Saf 189:109988. https://doi.org/10.1016/j.ecoenv.2019.109988

    Article  CAS  PubMed  Google Scholar 

  • Ebadollahi A, Ashrafi-Parchin R, Farjaminezhad M (2016) Phytochemistry, toxicity and feeding inhibitory activity of Melissa officinalis L. Essential oil against a cosmopolitan insect pest; Tribolium castaneum Herbst. Toxin Rev 35:77–82. https://doi.org/10.1080/15569543.2016.1199572

    Article  CAS  Google Scholar 

  • Ghasemi V, KhoshnoodYazdi A, TavallaieZaker F, JalaliSendi J (2013) Effect of essential oils from Callistemon viminalis and Ferula gummosa on toxicity and on the haemocyte profile of Ephestia kuehniella (Lep: Pyralidae). Arch Phytopathol Plant Prot 47:268–278. https://doi.org/10.1080/03235408.2013.808856

    Article  CAS  Google Scholar 

  • He H, Qin X, Dong F, Ye J, Xu C, Zhang H, Liu Z, Lv X, Wu Y, Jiang X, Cheng X (2020) Synthesis, characterization of two matrine derivatives and their cytotoxic effect on Sf9 cell of Spodoptera frugiperda. Sci Rep 10:17999. https://doi.org/10.1038/s41598-020-75053-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang F, Yang Y, Shi M, Li J, Chen Z, Chen F, Chen X (2011) Ultrastructural and functional characterization of circulating hemocytes from Plutella xylostella larva: cell types and their role in phagocytosis. Tissue Cell 42(6):360–364. https://doi.org/10.1016/j.tice.2010.07.012

    Article  Google Scholar 

  • Isman MB (2020) Botanical insecticides in the twenty-first century—fulfilling their promise? Annu Rev of Entomol 65(1):233–249. https://doi.org/10.1146/annurev-ento-011019-025010

    Article  CAS  Google Scholar 

  • Jafari Y, Rezaee V, Zargarpour P (2006) Study on biology of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae), a new pest of mulberry in Guilan province, Iran. The 17th Iran plant prot cong, Karaj, Iran, p. 257

  • Jankowska M, Lapied B, Jankowski W, Stankiewicz M (2019) The unusual action of essential oil component, menthol, in potentiating the effect of the carbamate insecticide, bendiocarb. Pest Biochem Physiol 158:101–111. https://doi.org/10.1016/j.pestbp.2019.04.013

    Article  CAS  Google Scholar 

  • Kavallieratos N, Boukouvala M, Ntalli N, Skourti A (2020) Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem Toxicol 139:111255. https://doi.org/10.1016/j.fct.2020.111255

    Article  CAS  PubMed  Google Scholar 

  • Khosravi R, JalaliSendi J, Valizadeh B, Brayner FA (2021) Mulberry pyralid haemocyts, a structural and functional study. Int J Trop Insect Sci 41:75–84. https://doi.org/10.1007/s42690-020-00177-w

    Article  Google Scholar 

  • Lima DB, Melo JWS, Guedes NMP, Gontijo LM, Guedes RNC, Gondim MGC (2015) Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki. PLoS ONE 10:e0118343. https://doi.org/10.1371/journal.pone.0118343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee BH, Annis PC, Tumaalii F, Choic WS (2004) Fumigant toxicity of essential oils from the Myrtaceae family and 1, 8- cineole against 3 major stored-grain insects. J Stored Prod Res 40:553–564

    Article  CAS  Google Scholar 

  • LeOra Software (2002) Polo Plus, a user’s guide to Probit or Logit Analysis; LeOra Software: Berkeley, CA, USA

  • Liu Y, Su H, Li R, Li X (2017) Xu Y (2017) Comparative transcriptome analysis of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae) reveals novel insights into heat stress tolerance in insects. BMC Genomics 18(1):974. https://doi.org/10.1186/s12864-017-4355-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes AIF, Monteiro M, Araújo ARL, Rodrigues ARO, Castanheira EMS, Pereira DM, Olim P, Fortes AG, Gonçalves M, Sameiro T (2020) Cytotoxic plant extracts towards insect cells: bioactivity and nanoencapsulation studies for application as biopesticides. Molecules 25(24):5855. https://doi.org/10.3390/molecules25245855

    Article  CAS  PubMed Central  Google Scholar 

  • Malathi H (2021) Evaluation of the cytotoxic effects of thorn extracts from medicinal plants on the sf21 cell line. Asian J Pharm 15(1):22

    CAS  Google Scholar 

  • Nollet LML, Rathore HS (Eds.) (2017) Green pesticides handbook: essential oils for pest control (1st ed.). CRC Press. https://doi.org/10.1201/9781315153131

  • Oh H, Bone JR, Kuroda MI (2004) Multiple classes of MSL binding sites target dosage compensation to the X chromosome of Drosophila. Curr Biol 14(6):481–487. https://doi.org/10.1016/j.cub.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  • Oftadeh M, Jalali Sendi J, Ebadollahi A (2020)a Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. Toxin Rev. https://doi.org/10.1080/15569543.2020.1811345

  • Oftadeh M, JalaliSendi J, Ebadollahi A (2020b) Toxicity and deleterious effects of Artemisia annua essential oil extracts on mulberry pyralid (Glyphodes pyloalis). Pestic Biochem Physiol 170:104702

    Article  CAS  Google Scholar 

  • Oftadeh M, JalaliSendi J, Ebadollahi A, Setzer WN, Krutmuang P (2021) Mulberry protection through flowering-stage essential oil of Artemisia annua against the lesser mulberry pyralid. Glyphodes Pyloalis Walker Foods 10(2):210. https://doi.org/10.3390/foods10020210

    Article  CAS  PubMed  Google Scholar 

  • Pavela R, Bartolucci F, Desneux N, LavoirAV Canale A, Maggi F, Benelli G (2019) Chemical profiles and insecticidal efficacy of the essential oils from four Thymus taxa growing in central-southern Italy. In Crops Prod 38:111460

    Article  Google Scholar 

  • Ramos RSA, Rodrigues BL, Farias ALF, Simões RC, Pinheiro MT, Ferreira RMD, Barbosa LMC, Souto RNP, Fernandes JB, Santos LDS, Almeida SSMD (2017) Chemical composition and in vitro antioxidant, cytotoxic, antimicrobial, and larvicidal activities of the essential oil of Mentha piperita L. (Lamiaceae). Sci World J 8:4927214. https://doi.org/10.1155/2017/4927214

    Article  CAS  Google Scholar 

  • Ren Y, He L, Jin H, Tao K, Hou T (2018) Cytotoxicity evaluation and apoptosis-inducingeffects of furanone analogues in insect cell lineSL2. Food Agric Immunol 29(1):964–975

    Article  CAS  Google Scholar 

  • Sahaf BZ, Moharramipour S, Meshkatalsadat MH (2008) Fumigant toxicity of essential oil fromVitex pseudonegundo against Triboliumcastaneum (Herbst) and Sitophilus oryzae (L.). J Asia Pac Entomol 11:175–179. https://doi.org/10.1016/j.aspen.2008.09.001

    Article  Google Scholar 

  • SAS Institute (1997). SAS/STAT user’s guide for personal computers. SAS Institute: Cary, NC, USA

  • Sharopov FS, Salimov A, Numonov S, Safomuddin A, Bakri M, Salimov T, Setzer WN, Habasi M (2020) Chemical composition, antioxidant, and antimicrobial activities of the essential oils from Artemisia annua L. growing wild in Tajikistan. Nat Prod Commun 15(5):1–7. https://doi.org/10.1177/1934578X20927814

    Article  Google Scholar 

  • Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N (2014) Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. B J Entomol Res Soc 104(3):393–402. https://doi.org/10.1017/S0007485313000710

    Article  CAS  Google Scholar 

  • Tan J, Xu M, Zhang K, Wang X (2013) Characterization of hemocytes proliferation in larval silkworm, Bombyx mori. J Insect Physiol 59:595–603. https://doi.org/10.1016/j.jinsphys.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  • Timoumi R, Amara I, Salem B, Buratti F, Franca M, Emanuella T, Salwa AE (2020) The implication of ROS production on triflumuron-induced oxidative stress and genotoxicity in human colon carcinoma (HCT-116) cells. Toxicol Res Appli 4:1–10

    Google Scholar 

  • Vijayakumar N, Nalini M, Rajkuberan C, Faruck LH, Bakshi H, Sangilimuthu AY (2021) Genotoxic and cytotoxic effect of chitinase against Corcyra cephalonica larvae under laboratory conditions. Int J Trop Insect Sci. https://doi.org/10.1007/s42690-021-00478-8

    Article  Google Scholar 

  • Watanabe H, Kurihara Y, Wang YX, Shimizu T (1988) Mulberry pyralid, Glyhodes pyloalis: habitual host of nonoccluded viruse s pathogenic to the silkworm Bombyx mori. J Inver Pathol 52:401–408. https://doi.org/10.1016/0022-2011(88)90052-3

    Article  Google Scholar 

  • Valizadeh B, Samarfard S, Jalali Sendi J, Karbanowicz TP (2020) Developing an Ephestia kuehniella hemocyte cell line to assess the bio-insecticidal potential of microencapsulated Helicoverpa armigera Nucleopolyhedrovirus against cotton bollworm (Lepi-doptera: Noctuidae) Larva. J Eco Entomol 113(5) 1–10. https://doi.org/10.1093/jee/toaa148

  • Zahirnia A, Boroomand M, Nasirian H, Soleimani-Asl S, Salehzadeh A (2019) Dastan D (2019) The cytotoxicity of malathion and essential oil of Nepeta crispa (lamiales: lamiaceae) against vertebrate and invertebrate cell lines. Pan Afr Medi J 12(11):1698–1706. https://doi.org/10.11604/pamj.2019.33.285.18776

    Article  CAS  Google Scholar 

  • Zhang Z, Guo SS, Zhang WJ, Geng ZF, Liang JY, Du SS, Wang CF, Deng ZW (2017) Essential oil and polyacetylenes from Artemisia ordosica and their bioactivities against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Ind Crop Prod 100:132–137. https://doi.org/10.1016/j.indcrop.2017.02.020

    Article  CAS  Google Scholar 

  • Zhang P, Qin D, Chen J, Zhang Z (2020) Plants in the genus Tephrosia: valuable resources for botanical insecticides. Insects 11:721. https://doi.org/10.3390/insects11100721

    Article  PubMed Central  Google Scholar 

  • Zhong G, Shui K, Huang J, Jia JW, Hu M (2008) Induction of apoptosis by botanical components in Spodoptera litura cultured cell line. Acta Entomol Sin 51(4):449–453

    Google Scholar 

Download references

Funding

The present work was financially supported by Iran National Science Foundation (INSF) for the grant no. (98004512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Jalali Sendi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oftadeh, M., Sendi, J.J., Valizadeh, B. et al. Hemocytic cell line from the moth Glyphodes pyloalis (Lepidoptera: Crambidae) response to essential oils from Artemisia annua (Asterales: Asteraceae). In Vitro Cell.Dev.Biol.-Animal 58, 14–20 (2022). https://doi.org/10.1007/s11626-021-00643-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-021-00643-w

Keywords

Navigation