Skip to main content
Log in

Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo (Bubalus bubalis) theca cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Granulosa cells (GCs) and theca cells (TCs) are the main components of follicles, and the interactions between GCs and TCs play a significant role in steroidogenesis, follicular growth, and atresia. However, the effects of GCs in the form of conditioned medium on steroidogenesis in buffalo TCs remain unclear. In the present study, the impacts of GC-conditioned medium (GCCM) on androgen synthesis in buffalo TCs were examined. The results showed that GCCM collected at 48 h promoted both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, 3β-HSD, and Star) and the secretion levels of testosterone in TCs. The treatment time of 48 h in GCCM improved both the expression levels of androgen synthesis-related genes (CYP11A1, CYP17A1, 3β-HSD, and Star) and the secretion levels of testosterone in TCs. Furthermore, GCCM that was collected at 48 h and applied to TCs for 48 h (48 h and 48 h) promoted the sensitivity of buffalo TCs to LH. This study indicated that GCCM (48 h and 48 h) enhanced the steroidogenic competence of TCs mainly through facilitating the responsiveness of TCs to LH in buffalo. This study provides a basis for further exploration of interactions between GCs and TCs for steroidogenesis in the ovary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Allegrucci C, Hunter MG, Webb R, Luck MR (2003) Interaction of bovine granulosa and theca cells in a novel serum-free co-culture system. Reproduction 126(4):527–538

    CAS  PubMed  Google Scholar 

  • Alviggi C, Clarizia R, Mollo A, Ranieri A, De Placido G (2006) Outlook: who needs LH in ovarian stimulation? Reprod Biomed Online 12(5):599–607

    CAS  PubMed  Google Scholar 

  • Campbell BK, Baird DT, Webb R (1998) Effects of dose of LH on androgen production and luteinization of ovine theca cells cultured in a serum-free system. J Reprod Fertil 112(1):69–77

    CAS  PubMed  Google Scholar 

  • Cara JF, Fan J, Azzarello J, Rosenfield RL (1990) Insulin-like growth factor-I enhances luteinizing hormone binding to rat ovarian theca-interstitial cells. J Clin Invest 86(2):560–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caubo B, DeVinna RS, Tonetta SA (1989) Regulation of steroidogenesis in cultured porcine theca cells by growth factors. Endocrinology 125(1):321–326

    CAS  PubMed  Google Scholar 

  • Deng Y, Huang G, Chen F, Testroet ED, Li H, Li H, Nong T, Yang X, Cui J, Shi D, Yang S (2019) Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. J Cell Physiol 234(10):17254–17268

    CAS  PubMed  Google Scholar 

  • Deshun S, Fenghua L, Yingming W, Kuiqing C, Sufang Y, Jingwei W, Qingyou L (2007) Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol Reprod 77(2):285–291

    Google Scholar 

  • Drummond AE (2006) The role of steroids in follicular growth. Reprod Biol Endocrinol 4(1):16–26

    PubMed  PubMed Central  Google Scholar 

  • Fortune JE (1986) Bovine theca and granulosa cells interact to promote androgen production. Biol Reprod 35(2):292–299

    CAS  PubMed  Google Scholar 

  • Gangloff A, Shi R, Nahoum V, Lin SX (2002) Pseudo-symmetry of C19-steroids, alternative binding orientations and multispecificity in human estrogenic 17β-hydroxysteroid dehydrogenase. FASEB J 17(2):274–276

    PubMed  Google Scholar 

  • Gervasio CG, Bernuci MP, Silva-de-Sa MF, Rosa-E-Silva AC (2014) The role of androgen hormones in early follicular development. ISRN Obstet Gynecol 10:1–11

    Google Scholar 

  • Kotsuji F, Kamitani N, Goto K, Tominaga T (1990) Bovine theca and granulosa cell interactions modulate their growth, morphology, and function. Biol Reprod 43(5):726–732

    CAS  PubMed  Google Scholar 

  • Kotsuji F, Tominaga T (1994) The role of granulosa and theca cell interactions in ovarian structure and function. Microsc Res Tech 27(2):97–107

    CAS  PubMed  Google Scholar 

  • Lin SX, Shi R, Qiu W, Azzi A, Zhu DW, Dabbagh HA, Zhou M (2006) Structural basis of the multispecificity demonstrated by 17β-hydroxysteroid dehydrogenase types 1 and 5. Mol Cell Endocrinol 248(1-2):38–46

    CAS  PubMed  Google Scholar 

  • Liu X, Qiao P, Jiang A, Jiang J, Han H, Wang L, Ren C (2015) Paracrine regulation of steroidogenesis in theca cells by granulosa cells derived from mouse preantral follicles. Biomed Res Int 2015:925691–925698

    PubMed  PubMed Central  Google Scholar 

  • Lu F, Luo C, Li N, Liu Q, Wei Y, Deng H, Wang X, Li X, Jiang J, Deng Y (2018) Efficient generation of transgenic buffalos (Bubalus bubalis) by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein. Sci Rep 8(1):6967–6975

    PubMed  PubMed Central  Google Scholar 

  • Magoffin DA (2005) Ovarian theca cell. Int J Biochem Cell Biol 37(7):1344–1349

    CAS  PubMed  Google Scholar 

  • Magoffin DA, Weitsman SR (1993a) Insulin-like growth factor-I stimulates the expression of 3 beta-hydroxysteroid dehydrogenase messenger ribonucleic acid in ovarian theca-interstitial cells. Biol Reprod 48(5):1166–1173

    CAS  PubMed  Google Scholar 

  • Magoffin DA, Weitsman SR (1993b) Differentiation of ovarian theca-interstitial cells in vitro: regulation of 17 alpha-hydroxylase messenger ribonucleic acid expression by luteinizing hormone and insulin-like growth factor-I. Endocrinology 132(5):1945–1951

    CAS  PubMed  Google Scholar 

  • Morley P, Calaresu FR, Barbe GJ, Armstrong DT (1989) Insulin enhances luteinizing hormone-stimulated steroidogenesis by porcine theca cells. Biol Reprod 40(4):735–743

    CAS  PubMed  Google Scholar 

  • Murayama C, Miyazaki H, Miyamoto A, Shimizu T (2012) Luteinizing hormone (LH) regulates production of androstenedione and progesterone via control of histone acetylation of StAR and CYP17 promoters in ovarian theca cells. Mol Cell Endocrinol 350(1):1–9

    CAS  PubMed  Google Scholar 

  • Oberlender G, Murgas LDS, Zangeronimo MG, Da Silva AC, Menezes TDA, Pontelo TP, Vieira LA (2013) Role of insulin-like growth factor-I and follicular fluid from ovarian follicles with different diameters on porcine oocyte maturation and fertilization in vitro. Theriogenology 80(4):319–327

    CAS  PubMed  Google Scholar 

  • Orisaka M, Tajima K, Mizutani T, Miyamoto K, Tsang BK, Fukuda S, Yoshida Y, Kotsuji F (2006) Granulosa cells promote differentiation of cortical stromal cells into theca cells in the bovine ovary. Biol Reprod 75(5):734–740

    CAS  PubMed  Google Scholar 

  • Orisaka M, Tajima K, Tsang BK, Kotsuji F (2009) Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res 2(1):9–15

    PubMed  PubMed Central  Google Scholar 

  • Parrott JA, Skinner MK (2000) Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol Reprod Dev 55(1):55–64

    CAS  PubMed  Google Scholar 

  • Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A (2018) Ovarian follicular theca cell recruitment, differentiation, and impact on fertility: 2017 Update. Endocr Rev 39(1):1–20

    PubMed  Google Scholar 

  • Roberts AJ, Skinner MK (1990a) Hormonal regulation of thecal cell function during antral follicle development in bovine ovaries. Endocrinology 127(6):2907–2917

    CAS  PubMed  Google Scholar 

  • Roberts AJ, Skinner MK (1990b) Estrogen regulation of thecal cell steroidogenesis and differentiation: thecal cell-granulosa cell interactions. Endocrinology 127(6):2918–2929

    CAS  PubMed  Google Scholar 

  • Rouhollahi Varnosfaderani S, Hajian M, Jafarpour F, Ghazvini Zadegan F, Nasr-Esfahani MH (2020) Granulosa secreted factors improve the developmental competence of cumulus oocyte complexes from small antral follicles in sheep. PLoS One 15(3):229043–229052

    Google Scholar 

  • Simone DA, Mahesh VB (1993) An autoregulatory process for androgen production in rat thecal-interstitial cells. Biol Reprod 48(1):46–56

    CAS  PubMed  Google Scholar 

  • Słomczyñska M, Tabarowski Z (2001) Localization of androgen receptor and cytochrome P450 aromatase in the follicle and corpus luteum of the porcine ovary. Anim Reprod Sci 65(1):127–134

    PubMed  Google Scholar 

  • Stewart RE, Spicer LJ, Hamilton TD, Keefer BE (1995) Effects of insulin-like growth factor I and insulin on proliferation and on basal and luteinizing hormone-induced steroidogenesis of bovine thecal cells: involvement of glucose and receptors for insulin-like growth factor I and luteinizing hormone. J Anim Sci 73(12):3719–3731

    CAS  PubMed  Google Scholar 

  • Stocco C, Telleria C, Gibori G (2007) The molecular control of corpus luteum formation, function, and regression. Endocr Rev 28(1):117–149

    CAS  PubMed  Google Scholar 

  • Tajima K, Orisaka M, Hosokawa K, Amsterdam A, Kotsuji F (2002) Effects of ovarian theca cells on apoptosis and proliferation of granulosa cells: changes during bovine follicular maturation1. Biol Reprod 66(6):1635–1639

    CAS  PubMed  Google Scholar 

  • Tajima K, Orisaka M, Mori T, Kotsuji F (2007) Ovarian theca cells in follicular function. Reprod Biomed Online 15(5):591–609

    CAS  PubMed  Google Scholar 

  • Wang H, Andoh K, Hagiwara H, Xiaowei L, Kikuchi N, Abe Y, Yamada K, Fatima R, Mizunuma H (2001) Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology 142(11):4930–4936

    CAS  PubMed  Google Scholar 

  • Webb R, Campbell BK, Garverick HA, Gong JG, Gutierrez CG, Armstrong DG (1999) Molecular mechanisms regulating follicular recruitment and selection. J Reprod Fertil Suppl 54:33–48

    CAS  PubMed  Google Scholar 

  • Wickenheisser JK, Nelson-DeGrave VL, McAllister JM (2006) Human ovarian theca cells in culture. Trends in Endocrinol Metab 17(2):65–71

    Google Scholar 

  • Wrathall JH, Knight PG (1995) Effects of inhibin-related peptides and oestradiol on androstenedione and progesterone secretion by bovine theca cells in vitro. J Endocrinol 145(3):491–500

    CAS  PubMed  Google Scholar 

  • Yada H, Hosokawa K, Tajima K, Hasegawa Y, Kotsuji F (1999) Role of ovarian theca and granulosa cell interaction in hormone production and cell growth during the bovine follicular maturation process. Biol Reprod 61(6):1480–1486

    CAS  PubMed  Google Scholar 

  • Young JM, McNeilly AS (2010) Theca: the forgotten cell of the ovarian follicle. Reproduction 140(4):489–504

    CAS  PubMed  Google Scholar 

  • Zhang J, Lei C, Deng Y, Ahmed JZ, Shi D, Lu F (2020) Hypoxia enhances mesenchymal characteristics maintenance of buffalo bone marrow-derived mesenchymal stem cells. Cell Reprogram 22(3):167–177

    CAS  PubMed  Google Scholar 

  • Zhang M, Su YQ, Sugiura K, Xia G, Eppig JJ (2010) Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science 330(6002):366–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Du F, Liu X, Ruan Q, Wu Z, Lei C, Deng Y, Luo C, Jiang J, Shi D, Lu F (2019) Brain-derived neurotrophic factor (BDNF) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Theriogenology 130:79–88

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank lab members.

Funding

This research was supported by the grants from the Chinese National Natural Science Foundation (31560633 and 31760666); Natural Science Foundation of Guangxi (2018JJA130074); Guangxi Innovation-Driven Development Fund Project (AA17204051); Nanning Scientific Research and Technological Development Foundation (20192087), and The New Century Guangxi Ten, Hundred and Thousand Talent Project.

Author information

Authors and Affiliations

Authors

Contributions

Jun Zhang designed the study, performed the experiments, and drafted the manuscript. Fenghua Lu and Deshun Shi designed the study. Yanfei Deng performed the experiments and drafted the manuscript. Jianchun Xu and Xiaofen Yang helped in performing the experiments, collecting and analyzing the data. Haoxin Wang edited the manuscript and analyzed the data.

Corresponding author

Correspondence to Fenghua Lu.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

All animal procedures used in this study are complied with the guidelines of Institutional Animal Care and Use Committee (IACUC) of Guangxi University.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Deng, Y., Xu, J. et al. Granulosa cell-conditioned medium enhances steroidogenic competence of buffalo (Bubalus bubalis) theca cells. In Vitro Cell.Dev.Biol.-Animal 56, 799–807 (2020). https://doi.org/10.1007/s11626-020-00509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-020-00509-7

Keywords

Navigation