Skip to main content
Log in

Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate the renogenic characteristics of amniotic fluid stem cells (AFSCs) and to evaluate their in vitro differentiation potential into renal proximal tubular-like cells and juxtaglomerular-like cells. We culture expanded AFSCs derived from rat amniotic fluid. The AFSCs grew as adherent spindle-shaped cells and expressed mesenchymal markers CD73, CD90, and CD105 as well as renal progenitor markers WT1, PAX2, SIX2, SALL1, and CITED1. AFSCs exhibited an in vitro differentiation potential into renal proximal tubular epithelial-like cells, as shown by the upregulation of expression of proximal tubular cell–specific genes like AQP1, CD13, PEPT1, GLUT5, OAT1, and OCT1. AFSCs could also be differentiated into juxtaglomerular-like cells as demonstrated by the expression of renin and α-SMA. The AFSCs also expressed pluripotency markers OCT4, NANOG, and SOX2 and could be induced into embryoid bodies with differentiation into all the three germ layers, highlighting the pluripotent nature of these cells. Our results show that amniotic fluid contains a population of primitive stem cells that express renal-progenitor markers and also possess the propensity to differentiate into two renal lineage cell types and, thus, may have a therapeutic potential in renal regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Antonucci I, Di Pietro R, Alfonsi M, Centurione MA, Centurione L, Sancilio S, Pelagatti F, D’Amico MA, Di Baldassarre A, Piattelli A, Tete S, Palka G, Borlongan CV, Stuppia L (2014) Human second trimester amniotic fluid cells are able to create embryoid body-like structures in vitro and to show typical expression profiles of embryonic and primordial germ cells. Cell Transplant. 23:1501–1515

    Article  PubMed  Google Scholar 

  • Basta JM, Robbins L, Kiefer SM, Dorsett D, Rauchman M (2014) Sall1 balances self-renewal and differentiation of renal progenitor cells. Development 141:1047–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunskill EW, Sequeira-Lopez MLS, Pentz ES, Lin E, Yu J, Aronow BJ, Potter SS, Gomez RA (2011) Genes that confer the identity of the renin cell. J. Am. Soc. Nephrol. 22:2213–2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cananzi M, De Coppi P (2012) CD117(+) amniotic fluid stem cells: state of the art and future perspectives. Organogenesis 8:77–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Monteiro Carvalho Mori Cunha MG, Zia S, Arcolino FO, Carlon MS, Beckmann DV, Pippi NL, Graça DL, Levtchenko E, Deprest J, Toelen J (2015) Amniotic fluid derived stem cells with a renal progenitor phenotype inhibit interstitial fibrosis in renal ischemia and reperfusion injury in rats. PLoS One 10:1–21

    Article  CAS  Google Scholar 

  • Da Sacco S, Sedrakyan S, Boldrin F, Giuliani S, Parnigotto P, Habibian R, Warburton D, De Filippo RE, Perin L (2010) Human amniotic fluid as a potential new source of organ specific precursor cells for future regenerative medicine applications. J. Urol. 183:1193–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditadi A, de Coppi P, Picone O, Gautreau L, Smati R, Six E, Bonhomme D, Ezine S, Frydman R, Cavazzana-Calvo M (2009) Human and murine amniotic fluid c-Kit+ Lin- cells display hematopoietic activity. Blood 113:3953–3960

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  PubMed  Google Scholar 

  • Frey IM, Rubio-Aliaga I, Siewert A, Sailer D, Drobyshev A, Beckers J, de Angelis MH, Aubert J, Bar Hen A, Fiehn O, Eichinger HM, Daniel H (2007) Profiling at mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tissue of Pept2-/-mice. Physiol. Genomics 28:301–310

    Article  CAS  PubMed  Google Scholar 

  • Fukuzawa T, Fukazawa M, Ueda O, Shimada H, Kito A, Kakefuda M, Kawase Y, Wada NA, Goto C, Fukushima N, Jishage K-I, Honda K, King GL, Kawabe Y (2013) SGLT5 reabsorbs fructose in the kidney but its deficiency paradoxically exacerbates hepatic steatosis induced by fructose. PLoS One 8:e56681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Jadhav SH, Tripathy NK, Nityanand S (2015a) Fetal Kidney cells can ameliorate ischemic acute renal failure in rats through their anti-inflammatory, anti-apoptotic and anti-oxidative effects. PLoS One 10:e0131057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Jadhav SH, Tripathy NK, Nityanand S (2015b) Fetal kidney stem cells ameliorate cisplatin induced acute renal failure and promote renal angiogenesis. World J. Stem Cells 7:776–788

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin W, Penington CJ, McCue SW, Simpson MJ (2017) A computational modelling framework to quantify the effects of passaging cell lines. PLoS One 12:e0181941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang M, Han Y-M (2014) Differentiation of human pluripotent stem cells into nephron progenitor cells in a serum and feeder free system. PLoS One 9:e94888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krause M, Rak-Raszewska A, Pietila I, Quaggin SE, Vainio S (2015) Signaling during kidney development. Cells 4:112–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Jalili RB, Ghahary A (2016) Accelerating skin wound healing by M-CSF through generating SSEA-1 and -3 stem cells in the injured sites. Sci. Rep. 6:28979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Wang Z, Chen L, Wang J, Li S, Liu C, Sun D (2018) The in vitro differentiation of GDNF gene-engineered amniotic fluid-derived stem cells into renal tubular epithelial-like cells. Stem Cells Dev. 27(9):590–599

    Article  CAS  PubMed  Google Scholar 

  • Marcus AJ, Woodbury D (2008) Fetal stem cells from extra-embryonic tissues: do not discard. J. Cell. Mol. Med. 12:730–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita K, Morello F, Wu Y, Zhang L, Iwanaga S, Pratt RE, Dzau VJ (2010) Mesenchymal stem cells differentiate into renin-producing juxtaglomerular (JG)-like cells under the control of liver X receptor-alpha. J. Biol. Chem. 285:11974–11982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mu D, Zhang X-L, Xie J, Yuan H-H, Wang K, Huang W, Li G-N, Lu J-R, Mao L-J, Wang L, Cheng L, Mai X-L, Yang J, Tian C-S, Kang L-N, Gu R, Zhu B, Xu B (2016) Intracoronary transplantation of mesenchymal stem cells with overexpressed integrin-linked kinase improves cardiac function in porcine myocardial infarction. Sci. Rep. 6:19155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy AJ, Pierce J, de Caestecker C, Taylor C, Anderson JR, Perantoni AO, de Caestecker MP, Lovvorn HN III (2012) SIX2 and CITED1, markers of nephronic progenitor self-renewal, remain active in primitive elements of Wilms’ tumor. J. Pediatr. Surg. 47:1239–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan K, Schumacher KM, Tasnim F, Kandasamy K, Schumacher A, Ni M, Gao S, Gopalan B, Zink D, Ying JY (2013) Human embryonic stem cells differentiate into functional renal proximal tubular-like cells. Kidney Int. 83:593–603

    Article  CAS  PubMed  Google Scholar 

  • Noronha IL, Cavaglieri RC, Janz FL, S a D, Lopes M a B, Zugaib M, Bydlowski SP (2011) The potential use of stem cells derived from human amniotic fluid in renal diseases. Kidney Int. Suppl. 1:77–82

    Article  Google Scholar 

  • Peired AJ, Sisti A, Romagnani P (2016) Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int. 2016:4798639

    PubMed  PubMed Central  Google Scholar 

  • Persson PB (2003) Renin: origin, secretion and synthesis. J. Physiol. 552:667–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfaller W, Gstraunthaler G (1998) Nephrotoxicity testing in vitro--what we know and what we need to know. Environ. Health Perspect. 106(Suppl):559–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel N, Rosner M, Hanneder M, Valli A, Hengstschläger M (2007) Stem cells in amniotic fluid as new tools to study human genetic diseases. Stem Cell Rev. 3:256–264

    Article  PubMed  Google Scholar 

  • Underwood MA, Gilbert WM, Sherman MP (2005) Amniotic fluid: not just fetal urine anymore. J. Perinatol. 25:341–348

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to extend their sincere thanks to Miss Manali Jain and Miss Shobhita Katiyar for assisting them in performing the growth kinetics and flow cytometry experiments. We would also like to express our gratitude to Dr. Anup Kumar, Assistant Professor, Department of Biostatistics, SGPGIMS, for extending his help for statistical analysis.

Funding

This work was supported by an Extramural Grant (BT/PR16863/MED/31/338/2016) of the Department of Biotechnology (DBT), Govt. of India, sanctioned to SN and Wellcome Trust DBT India Alliance Fellowship Grant (IA/I/16/1/502374) sanctioned to CPC. EM is the recipient of the Department of Science and Technology (DST), Govt. of India, INSPIRE PhD fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soniya Nityanand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minocha, E., Chaturvedi, C.P. & Nityanand, S. Renogenic characterization and in vitro differentiation of rat amniotic fluid stem cells into renal proximal tubular- and juxtaglomerular-like cells. In Vitro Cell.Dev.Biol.-Animal 55, 138–147 (2019). https://doi.org/10.1007/s11626-018-00315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-018-00315-2

Keywords

Navigation