Skip to main content

Advertisement

Log in

Nutritional demands and metabolic characteristics of the DSIR-HA-1179 insect cell line during growth and infection with the Oryctes nudivirus

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The DSIR-HA-1179 coleopteran cell line has been identified as a susceptible and permissive host for the in vitro replication of the Oryctes nudivirus, which can be used as a biopesticide against the coconut rhinoceros beetle, pest of palms. The major challenge to in vitro large-scale Oryctes nudivirus production is ensuring process economy. This rests, among other requisites, on the use of low-cost culture media tailored to the nutritional and metabolic needs of the cell line, both in uninfected and infected cultures. The aim of the present study was to characterize the nutritional demands and the metabolic characteristics of the DSIR-HA-1179 cell line during growth and subsequent infection with Oryctes nudivirus in the TC-100 culture medium. Serum-supplementation of the culture medium was found to be critical for cell growth, and addition of 10% fetal bovine serum v/v led to a maximum viable cell density (16.8 × 105 cells ml−1) with a population doubling time of 4.2 d. Nutritional and metabolic characterization of the cell line revealed a trend of glucose and glutamine consumption but minimal uptake of other amino acids, negligible production of lactate and ammonia, and the accumulation of alanine, both before and after infection. The monitoring of virus production kinetics showed that the TC-100 culture medium was nutritionally sufficient to give a peak yield of 7.38 × 107 TCID50 ml−1 of OrNV at the 6th day post-infection in attached cultures of DSIR-HA-1179 cells in 25 cm2 T-flasks. Knowledge of the cell line’s nutritional demands and virus production kinetics will aid in the formulation of a low-cost culture medium and better process design for large-scale OrNV production in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • AOAC (1995) AOAC official method 988.15. Tryptophan in foods and food and feed ingredients—ion exchange chromatographic method. In: Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • AOAC (1998a) AOAC official method 4.1.1, 994.12a. Amino acids in feeds: performic acid oxidation with acid hydrolysis—sodium metabisulfite method. In: Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • AOAC (1998b) AOAC official method 4.1.1, 994.12c. Amino acids in feeds: acid hydrolysis method. In: Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • Astray RM, Jorge SAC, Lemos MAN, Yokomizo AY, Boldorini VLL, Puglia ALP, Rebeiro AG, Pereira CA (2012) Kinetic studies of recombinant rabies virus glycoprotein (RVGP) cDNA transcription and mRNA translation in Drosophila melanogaster S2 cell populations. Cytotechnology 109:1443–1460

    Google Scholar 

  • Barnes D, Sato G (1980) Serum-free cell culture: a unifying approach. Cell 22:649–655

    Article  CAS  PubMed  Google Scholar 

  • Batista FRX, Greco KN, Astray RM, Jorge SAC, Augusto EFP, Pereira CA, Mendonca RZ, Moraes AM (2011) Behaviour of wild-type and S2 cells cultured in two different media. Appl Biochem Biotechnol 163(1):1–13

  • Batista FRX, Pereira CA, Mendonca RZ, Moraes AM (2005) Enhancement of Sf9 cells and baculovirus production employing Grace’s medium supplemented with milk whey ultrafiltrate. Cytotechnology 49(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedard C, Kamen A, Tom R, Massie B (1994) Maximization of recombinant protein yield in insect cell/baculovirus system by one-time addition of nutrients to high-density batch cultures. Cytotechnology 15:129–138

    Article  CAS  PubMed  Google Scholar 

  • Bedard C, Tom R, Kamen AA (1993) Growth, nutrient consumption, and end-product accumulation in Sf-9 and BTI-EAA insect cell cultures: insights into growth limitation and metabolism. Biotechnol Prog 9:615–624

  • Benslimane C, Elias CB, Hawari J, Kamen A (2005) Insights into the central metabolism of Spodoptera frugiperda (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5) insect cells by radiolabelling studies. Biotechnol Prog 21:78–86

    Article  CAS  PubMed  Google Scholar 

  • Bergem M, Norberg K, Aamodt RM (2006) Long-term maintenance of in vitro cultured honeybee (Apis mellifera) embryonic cells. BMC Dev Biol 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernal V, Carinhas N, Yokomizo AY, Carrondo MJT, Alves PM (2009) Cell density effect in the baculovirus-insect cells system: a quantitative analysis of energetic metabolism. Biotechnol Bioeng 104(1):162–180

    Article  CAS  PubMed  Google Scholar 

  • Bhatia R, Jesionowski G, Ferrance J, Ataai MM (1997) Insect cell physiology. Cytotechnology 24:1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bovo R, Galesi AL, Jorge SA, Piccoli RA, Pereira CA, Augusto EF (2008) Kinetic response of a Drosophila melanogaster cell line to different medium formulations and conditions. Cytotechnology 57:23–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calles K, Erikson U, Haggstrom L (2006) Effect of conditioned medium factors on productivity and cell physiology in Trichoplusia ni insect cell cultures. Biotechnol Prog 22:653–659

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Greenfield P, Reid S (1996) In vitro production studies with a wild-type Helicoverpa baculovirus. Cytotechnology 22:217–224

    Article  CAS  PubMed  Google Scholar 

  • Chiarello RH, Himmerich S (2001) Cost effective media for large scale insect cell culture. U.S. patent no. 20020119567 A1, filed August 21, 2001, and issued August 29, 2002

  • Cho T, Shuler ML, Granados RR (1989) Current developments in new media and cell culture systems for the large-scale production of insect cells. In: Maramorosch K, Sato GH (eds) Advances in cell culture, Volume 7. Academic Press, Inc. pp. 261–277

  • Claus JD, Gioria VV, Micheloud GA, Visnovsky G (2012) Production of insecticidal baculoviruses in insect cell cultures: potential and limitations. In: Soloneski S, Larramendy L (eds) Insecticides – basic and other applications. InTech. pp. 127–152

  • Clements A, Grace TDC (1967) The utilization of sugars by insect cells in culture. J Insect Physiol 13:1327–1332

    Article  CAS  Google Scholar 

  • Cohen SA (2000) Amino acid analysis using precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Methods Mol Biol 159:39–47

    CAS  PubMed  Google Scholar 

  • Crawford AM (1982) A coleopteran cell line derived from Heteronychus arator (Coleoptera: Scarabaeidae). In Vitro 18:813–816

    Article  Google Scholar 

  • Crawford AM, Sheehan C (1984) An Oryctes rhinoceros (L.) (Coleoptera: Scarabaeidae) Baculovirus inoculum derived from tissue culture. J Econ Entomol 77:1610–1611

    Article  Google Scholar 

  • Crawford AM, Sheehan C (1985) Replication of Oryctes baculovirus in cell culture: viral morphogenesis, infectivity and protein synthesis. J Gen Virol 66:529–539

    Article  CAS  Google Scholar 

  • Crawford AM, Zelazny B, Alfiler RA (1986) Genotypic variation in geographical isolates of Oryctes baculovirus. J Gen Virol 67:949–952

    Article  Google Scholar 

  • Cruz PE, Martins PC, Alves PM, Peixoto CC, Santos H, Moreira JL, Carrondo MJT (1999) Proteolytic activity in infected and noninfected insect cells: degradation of HIV-1 Pr55gag particles. Biotechnol Bioeng 65:133–143

    Article  CAS  PubMed  Google Scholar 

  • Davis TR, Wickham TJ, McKenna KA, Granados RR, Shuler ML, Wood HA (1993) Comparative recombinant protein production of eight insect cell lines. In Vitro Cell Dev Biol 29(5):388–390

    Article  Google Scholar 

  • Donaldson M, Shuler M (1998) Low-cost serum-free medium for the BTI-Tn5B1-4 insect cell line. Biotechnol Prog 14:573–579

    Article  CAS  PubMed  Google Scholar 

  • Doverskog M, Ljunggren J, Ohman L et al (1997) Physiology of cultured animal cells. J Biotechnol 59:103–115

    Article  CAS  PubMed  Google Scholar 

  • Drews M, Paalme T, Vilu R (1995) The growth and nutrient utilization of the insect cell line Spodoptera frugiperda in batch and continuous culture. J Biotechnol 40:187–198

    Article  CAS  Google Scholar 

  • Drews M, Doverskog M, Ohman L, Chapman BE, Jacobsson U, Kuchel PW, Haggstrom L (2000) Pathways of glutamine metabolism in Spodoptera frugiperda (Sf9) insect cells: evidence for the presence of the nitrogen assimilation system, and a metabolic switch by 1H/15N NMR. J Biotechnol 78:23–37

    Article  CAS  PubMed  Google Scholar 

  • Drugmande J-C, Schneider Y-J, Agathos SN (2012) Insect cells as factories for biomanufacturing. Biotechnol Adv 30(5):1140–1157

    Article  Google Scholar 

  • Ferrance JP, Goel A, Ataai MM (1993) Utilization of glucose and amino acids in insect cell cultures: quantifying the metabolic flows within the primary pathways and medium development. Biotechnol Bioeng 42:697–707

    Article  CAS  PubMed  Google Scholar 

  • Galesi ALL, Pereira CA, Moraes AM (2007) Culture of transgenic Drosophila melanogaster Schneider 2 cells in serum-free media based on TC-100 basal medium. Biotechnol J 2:1399–1407

    Article  CAS  PubMed  Google Scholar 

  • Gioria VV, Jäger V, Claus JD (2006) Growth, metabolism and baculovirus production in suspension cultures of an Anticarsia gemmatalis cell line. Cytotechnology 52:113–124

    Article  CAS  PubMed  Google Scholar 

  • Gopal M, Gupta A, Sathiamma B, Nair CPR (2001) Control of the coconut pest Oryctes rhinoceros L. using the Oryctes virus. Insect Sci Applic 21(2):93–101

    Google Scholar 

  • Gray MA, James MH, Booth JC, Pasternak CA (1986) Increased sugar transport in BHK cells infected with Semliki Forest virus or with herpes simplex virus. Arch Virol 87:37–48

    Article  CAS  PubMed  Google Scholar 

  • Hensler WT, Agathos SN (1994) Evaluation of monitoring approaches and effects of culture conditions on recombinant protein production in baculovirus-infected insect cells. Cytotechnology 15:177–184

    Article  CAS  PubMed  Google Scholar 

  • Hu Y-C, Bentley WE (1999) Enchancing yield of infectious Bursal disease virus structural proteins in baculovirus expression systems: focus on media, protease inhibitors, and dissolved oxygen. Biotechnol Prog 15:1065–1071

    Article  CAS  PubMed  Google Scholar 

  • Huger AM (2005) The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaedaie). J Invertebr Pathol 89:78–84

    Article  PubMed  Google Scholar 

  • Ikonomou L, Bastin G, Schneider Y, Agathos S (2001) Design of an efficient medium for insect cell growth and recombinant protein production. In: Vitro Cell, vol 37, pp 549–559

    Google Scholar 

  • Jackson TA (2009) The use of Oryctes virus for control of rhinoceros beetle in the Pacific Islands. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer Science & Business Media BV, Netherlands, pp 133–140

    Chapter  Google Scholar 

  • Kamen AA, Bedard C, Tom R, Perret S, Jardin B (1996) On-line monitoring of respiration in recombinant-baculovirus infected and uninfected insect cell bioreactor cultures. Biotechnol Bioeng 50:36–48

  • Kamen AA, Tom RL, Caron AW, Chavarie C, Massie B, Archambault J (1991) Culture of insect cells in a helical ribbon impeller bioreactor. Biotechnol Bioeng 38:619–628

    Article  CAS  PubMed  Google Scholar 

  • Kayukawa T, Tateishi K, Shinoda T (2013) Establishment of a versatile cell line for juvenile hormone signaling analysis in Tribolium castaneum. Sci Rep 3(1570):1–9

    Google Scholar 

  • Kloppinger M, Fertig G, Fraune E, Miltenburger HG (1990) Multistage production of Autographa californica nuclear polyhedrosis-virus in insect cell-cultures. Cytotechnology 4:271–278

    Article  CAS  PubMed  Google Scholar 

  • Kwon MS, Dojima T, Park EY (2003) Comparative characterization of growth and recombinant protein production among three insect cell lines with four kinds of serum free media. Biotechnology and Bioprocess Engineering 8 (2):142–146

  • Lery X, Fediere G (1990) A new serum-free medium for lepidopteran cell culture. J Invertebr Pathol 55:342–349

    Article  Google Scholar 

  • Long SH, McIntosh AH, Grasela JJ, Goodman CL (2002) The establishment of a Colorado potato beetle (Coleoptera: Chrysomelidae) pupal cell line. Appl Entomol Zool 37(3):447–450

    Article  Google Scholar 

  • Lua LHL, Reid S (2003) Growth, viral production and metabolism of a Helicoverpa zea cell line in serum-free culture. Cytotechnology 42:109–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiorella B, Inlow D, Shauger A, Harano D (1988) Large-scale insect cell culture for recombinant protein production. Nature. Biotechnol 6:1406–1410

    CAS  Google Scholar 

  • Maranga L, Cruz PE, Aunins JG, Carrondo MJT (2002) Production of core and virus-like particles with baculovirus infected insect cells. Adv Biochem Eng Biotechnol 74:183–206

    CAS  PubMed  Google Scholar 

  • Marteijn RCL, Jurrius O, Dhont J, de Gooijer CD, Tramper J, Martens DE (2002) Optimization of a feed medium for fed-batch culture of insect cells using a genetic algorithm. Biotechnol Bioeng 49(1):269–278

    Google Scholar 

  • Matindoost L, Hu H, Chan LCL, Neilsen LK, Reid S (2014) The effect of cell line, phylogenetics and medium on baculovirus budded yield and quality. Arch Virol 159:91–102

    Article  CAS  PubMed  Google Scholar 

  • Mendonca RZ, Palomares LA, Ramirez OT (1999) An insight into insect cell metabolism through selective nutrient manipulation. J Biotechnol 72:61–75

    Article  Google Scholar 

  • Micheloud GA, Gioria VV, Perez G, Claus JD (2009) Production of occlusion bodies of Anticarsia gemmatalis multiple nucleopolyhedrosis in serum-free suspension cultures of the saUFL-AG-286 cell line: influence of infection conditions and statistical optimization. J Virol Methods 162:258–266

    Article  CAS  PubMed  Google Scholar 

  • Mondzac A, Ehrlich GE, Seegmiller JE (1965) An enzymatic determination of ammonia in biological fluids. J Lab Clin Med 66(3):526–531

    CAS  PubMed  Google Scholar 

  • Monteiro F, Bernal V, Alves PM (2017) The role of host cell physiology in the productivity of the baculovirus-insect cell system: Fluxome analysis in Trichoplusia ni and Spodoptera frugiperda cell lines. Biotechnol Bioeng 114(3):674–684

  • Monteiro F, Bernal V, Chaillet M, Berger I, Alves PM (2016) Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system. J Biotechnol 233:34–41

  • Monteiro F, Bernal V, Saelens X, Lozano AB, Bernal C, Sevilla A, Carrondo MJT, Alves PM (2014) Metabolic profiling of insect cell lines: unveiling cell line determinants behind system’s productivity. Biotechnol Bioeng 111:816–828

  • Monteiro F, Carinhas N, Carrondo MJT, Bernal V, Alves PM (2012) Towards system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front Microbiol 3:391–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neerman J, Wagner R (1996) Comparative analyses of glucose and glutamine metabolism in transformed mammalian cell lines, insect and primary liver cells. J Cell Physiol 166:152–169

    Article  Google Scholar 

  • Ohman L, Ljunggren J, Haggstrom L (1995) Induction of a metabolic switch in insect cells by substrate-limited fed bacth cultures. Appl Microbiol Biotechnol 43:1006–1013

    Article  CAS  PubMed  Google Scholar 

  • Palomares LA, Ramirez OT (1996) The effect of dissolved oxygen tension and the utility of oxygen uptake rate in insect cell culture. Cytotechnology 22(1–3):225–237

    Article  CAS  PubMed  Google Scholar 

  • Palomares LA, Ramirez OT (1998) Insect cell culture: recent advances, bioengineering challenges and implications in protein production. In: Galindo R, Ramirez OT (eds) Advances in bioprocess engineering, volume II. Springer, Netherlands, pp 25–52

    Chapter  Google Scholar 

  • Palomares LA, Realpe M, Ramirez OT (2015) An overview of cell culture engineering for the insect cell-baculovirus expression vector system (BEVS). In: Al Rubei M (ed) Animal Cell Culture. Springer International Publishing, New York, NY, pp 501–519

    Google Scholar 

  • Pedrini MRS, Reid S, Nielsen LK, Chan LCL (2011) Kinetic characterization of the group II Helicoverpa armigera nucleopolyhedrovirus propagated in suspension cell cultures: implications for development of a biopesticide production process. Biotechnol Prog 27(3):614–624

    Article  CAS  PubMed  Google Scholar 

  • Phillips HJ (1973) Dye exclusion tests for cell viability. In: Kruse PF, Patterson MK (eds) Tissue Culture: methods and applications. Academic Press, New York, pp 406–408

  • Pollard R, Khosrovi B (1978) Reactor design for fermentation of fragile tissue cells. Process Biochem 13:31–37

    CAS  Google Scholar 

  • Pushparajan C, Claus JD, Marshall SDG, Visnovsky G (2013) Characterization of growth and Oryctes rhinoceros nudivirus production in attached cultures of the DSIR-HA-1179 coleopteran insect cell line. Cytotechnology 65:1003–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford KM, Reid S, Greenfield PF (1997) Substrate limitation in the baculovirus expression vector system. Biotechnol Bioeng 56:32–44

    Article  CAS  PubMed  Google Scholar 

  • Raghunand N, Dale BE (1999) Alteration of glucose consumption kinetics with progression of baculovirus infection in Spodoptera frugiperda cells. Appl Biochem and. Biotechnol 80:231–242

    CAS  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method of estimating 50% endpoints. Am J Epidemiol 27:493–497

    Article  Google Scholar 

  • Reid S, Chan LCL, Van Oers MM (2013) Production of entomopathogenic viruses. In: Shapiro D et al (eds) Mass production of beneficial organisms. Elsevier, Amsterdam, pp 437–482

    Google Scholar 

  • Rhiel M, Mitchell-Logan CM, Murhammer DW (1997) Comparison of Trichoplusia ni BTI-Tn-5B1-4 (high five) and Spodoptera frugiperda Sf9 insect cell line metabolism in suspension cultures. Biotechnol Bioeng 55:909–920

    Article  CAS  PubMed  Google Scholar 

  • Rodas VM, Marques FH, Honda MT, Soares DM, Jorge SAC, Antoniazzi MM, Medugno C, Castro MEB, Ribeiro BM, Souza ML, Tonso A, Pereira CA (2005) Cell culture derived AgMNPV bioinsecticide: biological constraints and bioprocess issues. Cytotechnology 48:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roder A (1982) Development of a serum-free medium for cultivation of insect cells. Naturwissenschaften 69:92–93

    Article  CAS  PubMed  Google Scholar 

  • Schlaeger E-J (1996) Medium design for insect cell culture. Cytotechnology 20:57–70

    Article  CAS  PubMed  Google Scholar 

  • Schweiger A, Gunther H (1964) A comparison of two methods for the determination of lactic acid in muscle. J Food Sci 29(6):808–813

    Article  CAS  Google Scholar 

  • Slein MW (1963) D-glucose determinations with hexokinase and glucose-6-phosphate dehydrogenase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, p p117

    Google Scholar 

  • Smagghe G (2007) Insect cell lines as tools in insecticide mode of action research. In: Ishaaya I, Nauen R, Horowitz R (eds) Insecticides design using advanced technologies. Springer, Berlin, Germany, pp 263–304

  • Sohi SS, Smith C (1970) Effect of fetal bovine serum on the growth and survival of insect cell cultures. Can J Zool 48(3):427–432

    Article  CAS  PubMed  Google Scholar 

  • Stavroulakis DA, Kalogerakis N, Behie LA (1991a) Growth characteristics of a Bombyx mori insect cell line in stationary and suspension cultures. Can J Chem Eng 69:457–464

    Article  CAS  Google Scholar 

  • Stavroulakis DA, Kalogerakis N, Behie LA, Iatrou K (1991b) Kinetic data for the BM-5 insect cell line in repeated-batch suspension cultures. Biotechnol Bioeng 38:116–126

    Article  CAS  PubMed  Google Scholar 

  • Stockdale H, Gardiner GR (1977) The influence of condition of cells and medium on production of polyhedra of Autographa californica nuclear polyhedrosis virus in vitro. J Invertebr Pathol 30:330–336

    Article  Google Scholar 

  • Sugiura T, Amann E (1996) Properties of two insect cell lines useful for the baculovirus—expression system in serum free culture. Biotechnol Bioeng 51:494–499

    Article  CAS  PubMed  Google Scholar 

  • Taticek R, Shuler ML (1997) Effect of elevated oxygen and glutamine levels on foreign protein production at high cell densities using the insect cell-baculovirus expression system. Biotechnol Bioeng 54:142–152

    Article  CAS  PubMed  Google Scholar 

  • Tramper J, Vlak JM (1986) Some engineering and economic aspects of continuous cultivation of insect cells for the production of baculoviruses. Ann N Y Acad Sci 469:279–288

    Article  Google Scholar 

  • Visnovsky G, Claus JD (1994) Influence of time and multiplicity of infection on the batch production of Anticarsia gemmatalis nuclear polyhedrosis virus in lepidopteran insect cell cultures. In: Galindo E, Ramirez OT (eds) Advances in bioprocess engineering. Kluwer Academic Publishers, Netherlands, pp 123–128

    Chapter  Google Scholar 

  • Warren AP, James MH, Menzies DE, Widnell CC, Whitaker-Dowling PA, Pasternak CA (1986) Stress induces an increased hexose uptake in cultured cells. J Cell Physiol 128:383–388

    Article  CAS  PubMed  Google Scholar 

  • Wickham TJ, Davis T, Granados RR, Shuler ML, Wood HA (1992) Screening of insect cell lines for the production of recombinant proteins and infectious virus in the baculovirus expression system. Biotechnol Prog 8(5):391–396

    Article  CAS  PubMed  Google Scholar 

  • Wood HA, Johnson LB, Burand JP (1982) Inhibition of Autographa californica nuclear polyhedrosis virus replication in high-density Trichoplusia ni cell cultures. Virology 119:245–254

    Article  CAS  PubMed  Google Scholar 

  • Zelazny B, Lolong A, Crawford AM (1990) Introduction and field comparison of baculovirus strains against Oryctes rhinoceros (Coleoptera: Scarabaeidae) in the Maldives. Environ Entomol 19:1115–1121

    Article  Google Scholar 

  • Zheng G-L, Li M-M, Li C-Y (2014) Establishment and characterization of three new cell lines from the embryonic tissue of Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae). In Vitro Cell Dev Biol Animal 50(6):483–488

    Article  CAS  Google Scholar 

Download references

Funding

This research was partially funded by the New Zealand Foundation for Research, Science and Technology Research Fund, contract C10X0804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Visnovsky.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushparajan, C., Claus, J.D., Marshall, S.D. et al. Nutritional demands and metabolic characteristics of the DSIR-HA-1179 insect cell line during growth and infection with the Oryctes nudivirus. In Vitro Cell.Dev.Biol.-Animal 53, 908–921 (2017). https://doi.org/10.1007/s11626-017-0206-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-017-0206-6

Keywords

Navigation