Skip to main content

Cell Culture for Production of Insecticidal Viruses

  • Protocol
  • First Online:
Microbial-Based Biopesticides

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1477))

Abstract

While large-scale culture of insect cells will need to be conducted using bioreactors up to 10,000 l scale, many of the main challenges for cell culture-based production of insecticidal viruses can be studied using small-scale (20–500 ml) shaker/spinner flasks, either in free suspension or using microcarrier-based systems. These challenges still relate to the development of appropriate cell lines, stability of virus strains in culture, enhancing virus yields per cell, and the development of serum-free media and feeds for the desired production systems. Hence this chapter presents mainly the methods required to work with and analyze effectively insect cell systems using small-scale cultures. Outlined are procedures for quantifying cells and virus and for establishing frozen cells and virus stocks. The approach for maintaining cell cultures and the multiplicity of infection (MOI) and time of infection (TOI) parameters that should be considered for conducting infections are discussed.

The methods described relate, in particular, to the suspension culture of Helicoverpa zea and Spodoptera frugiperda cell lines to produce the baculoviruses Helicoverpa armigera nucleopolyhedrovirus, HearNPV, and Anticarsia gemmatalis multicapsid nucleopolyhedrovirus, AgMNPV, respectively, and the production of the nonoccluded Oryctes nudivirus, OrNV, using an adherent coleopteran cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reid S, Chan LCL, Van Oers MM (2014) Production of entomopathoginic viruses. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms Invertebrates and entomopathogens. Elsevier, Amsterdam. ISBN 978-0-12-391453-8

    Google Scholar 

  2. Harrison R, Hoover K (2012) Baculoviruses and other occluded insect viruses. In: Vega F, Kaya H (eds) Insect pathology, 2nd edn. Elsevier, Amsterdam, pp 73–131

    Chapter  Google Scholar 

  3. Buerger P, Hauxwell C, Murray D (2007) Nucleopolyhedrovirus introduction in Australia. Virol Sin 22:173–179

    Article  CAS  Google Scholar 

  4. Ignoffo CM (1973) Development of a viral insecticide – concept to commercialization. Exp Parasitol 33:380–406

    Article  CAS  PubMed  Google Scholar 

  5. Black BC, Brennan LA, Dierks PM, Gard IE (1997) Commercialisation of baculoviral insecticides. In: Miller LK (ed) The baculoviruses. Plenum, New York, NY, pp 341–388

    Chapter  Google Scholar 

  6. McIntosh AH, Ignoffo CM (1981) Replication and infectivity of the single-embedded nuclear polyhedrosis-virus, Baculovirus-heliothis, in homologous cell-lines. J Invertebr Pathol 37:258–264

    Article  Google Scholar 

  7. Lua LHL, Reid S (2000) Virus morphogenesis of Helicoverpa armigera nucleopolyhedrovirus in Helicoverpa zea serum-free suspension culture. J Gen Virol 81:2531–2543

    Article  CAS  PubMed  Google Scholar 

  8. Nguyen Q, Qi YM, Wu Y, Chan LCL, Nielsen LK, Reid S (2011) In vitro production of Helicoverpa baculovirus biopesticides—automated selection of insect cell clones for manufacturing and systems biology studies. J Virol Methods 175:197–205

    Article  CAS  PubMed  Google Scholar 

  9. Pedrini MRS, Reid S, Nielsen L, Chan LCL (2011) Kinetic characterization of the Group II Helicoverpa armigera nucleopolyhedrovirus propagated in suspension cell cultures: Implications for development of a biopesticides production process. Biotechnol Prog 27:614–624

    Article  CAS  PubMed  Google Scholar 

  10. Mena JA, Kamen AA (2011) Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 10:1063–1081

    Article  CAS  PubMed  Google Scholar 

  11. Almeida AF, Macedo GR, Chan LCL, Pedrini MRS (2010) Kinetic analysis of in vitro production of wild-type Spodoptera frugiperda nucleopolyhedrovirus. Braz Arch Biol Technol 53:285–291

    Article  Google Scholar 

  12. Micheloud GA, Gioria VV, Eberhardtb I, Visnovsky G, Claus J (2011) Production of the Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line in stirred reactor and airlift reactor. J Virol Methods 178:106–116

    Article  CAS  PubMed  Google Scholar 

  13. Micheloud GA, Gioria VV, Perez G, Claus JD (2009) Production of occlusion bodies of Anticarsia gemmatalis multiple nucleopolyhedrovirus in serum-free suspension cultures of the saUFL-AG-286 cell line: influence of infection conditions and statistical optimization. J Virol Methods 162:258–266

    Article  CAS  PubMed  Google Scholar 

  14. Crawford AM, Zelazny B, Alfiler RA (1986) Genotypic variation in geographical isolates of Oryctes baculovirus. J Gen Virol 67:949–952

    Article  Google Scholar 

  15. Zelazny B, Lolong A, Crawford AM (1990) Introduction and field comparison of baculovirus strains against Oryctes rhinoceros (Coleoptera: Scarabaeidae) in the Maldives. Environ Entomol 19:1115–1121

    Article  Google Scholar 

  16. Crawford AM (1982) A coleopteran cell line derived from Heteronychus arator (Coleoptera: Scarabaeidae). In Vitro 18:813–816

    Article  Google Scholar 

  17. Jackson TA, Crawford AM, Glare TR (2005) Oryctes virus—time for a new look at a useful biocontrol agent. J Invertebr Pathol 89:91–94

    Article  PubMed  Google Scholar 

  18. Bedford GO (2014) Advances in the control of rhinoceros beetle, Oryctes rhinoceros. In oil palm—review article. J Oil Palm Res 26:183–194

    Google Scholar 

  19. Manjeri GR, Muhamad R, Tan SG (2014) Oryctes rhinoceros beetles, an oil palm pest in Malaysia. Ann Res Rev Biol 4:3429–3439

    Article  Google Scholar 

  20. Portner R (2014) Animal cell biotechnology, 3rd edn. Humana, New York, NY. ISBN 978-1-62703-732-7

    Book  Google Scholar 

  21. Murhammer DW (2007) Baculovirus and insect cell expression protocols, 2nd edn. Humana, Totowa, NJ. ISBN 978-1-59745-457-5

    Book  Google Scholar 

  22. Drugmand J-C, Schneider Y-J, Agathos SN (2012) Insect cells as factories for biomanufacturing. Biotechnol Adv 30:1140–1157

    Article  CAS  PubMed  Google Scholar 

  23. Felberbaum RS (2015) The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 10:702–714

    Article  CAS  PubMed  Google Scholar 

  24. Meghrous J, Mahmoud W, Jacob D, Chubet R, Cox M, Kamen AA (2010) Development of a simple and high-yielding fed-batch process for the production of influenza vaccines. Vaccine 28:309–316

    Article  Google Scholar 

  25. Chan LCL, Greenfield PF, Reid S (1998) Optimising fed-batch production of recombinant proteins using the baculovirus expression vector system. Biotech Bioeng 59:178–188

    Article  CAS  Google Scholar 

  26. Matindoost L, Hu H, Chan LCL, Nielsen LK, Reid S (2014) The effect of cell line, phylogenetics and medium on baculovirus budded virus yield and quality. Arch Virol 159:91–102

    Article  CAS  PubMed  Google Scholar 

  27. Tran TTB, Dietmair S, Chan LCL, Huynh HT, Nielsen LK, Reid S (2012) Development of quenching and washing protocols for quantitative intracellular metabolite analysis of uninfected and baculovirus-infected insectcells. Methods 56:396–407

    Article  CAS  PubMed  Google Scholar 

  28. Nguyen Q, Nielsen LK, Reid S (2013) Genome scale transcriptomics of baculovirus-insect interactions. Viruses 5:2721–2747. doi:10.3390/v5112721

    Article  PubMed  PubMed Central  Google Scholar 

  29. Monteiro F, Carinhas N, Carrondo MJ, Bernal V, Alves PM (2012) Toward system-level understanding of baculovirus-host cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front Microbiol 3:391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen YR, Zhong S, Fei Z, Gao S, Zhang S, Li Z, Wang P, Blissard GW (2014) Transcriptome responses of the host Trichoplusia ni to infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 88:13781–13797

    Article  PubMed  PubMed Central  Google Scholar 

  31. Visnovsky G, Claus J (1994) Influence of the time and multiplicity of infection on the batch production of Anticarsia gemmatalis nuclear polyhedrosis virus in lepidopteran insect cell cultures. Adv Bioproc Eng 1994:123–128

    Article  Google Scholar 

  32. Pushparajan C, Claus JD, Marshall SDG, Visnovsky G (2013) Characterization of growth and Oryctes rhinoceros nudivirus production in attached cultures of the DSIR-HA-1179 coleopteran insect cell line. Cytotechnology 65:1003–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nielsen LK, Smyth GK, Greenfield PF (1991) Hemacytometer cell count distributions-implications of non-poisson behavior. Biotechnol Prog 7:560–563

    Article  Google Scholar 

  34. Pijlman GP, Van Schijndel JE, Vlak JM (2003) Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J Gen Virol 84:2669–2678

    Article  CAS  PubMed  Google Scholar 

  35. Lua LHL, Pedrini MRS, Reid S, Robertson A, Tribe DE (2002) Phenotypic and genotypic analysis of Helicoverpa armigera nucleopolyhedrovirus serially passaged in cell culture. J Gen Virol 83:945–955

    Article  CAS  PubMed  Google Scholar 

  36. Lynn DE (1994) Enhanced infectivity of occluded virions of the gypsy-moth nuclear polyhedrosis-virus for cell-cultures. J Invertebr Pathol 63:268–274

    Article  Google Scholar 

  37. Nielsen J, Villadsen J, Liden G (2003) Bioreaction engineering principles. Kluwer, New York, NY

    Book  Google Scholar 

  38. Zhu H, Nienow AW, Bujalski W, Simmons MJH (2009) Mixing studies in a model aerated bioreactor equipped with an up- or a down-pumping ‘Elephant Ear’ agitator: power, hold-up and aerated flow field measurements. Chem Eng Res Des 87:307–317

    Article  CAS  Google Scholar 

  39. Visnovsky G, Claus J, Merchuk JC (2003) Airlift reactors as a tool for insect cells and baculovirus mass production. LA Appl Res 33:117–121

    Google Scholar 

  40. Louis KS, Seigel AC (2011) Cell viability analysis using Trypan blue: manual and automated methods. Mammalian cell viability. Methods Mol Biol 740:7–12

    Article  CAS  PubMed  Google Scholar 

  41. Phillips HJ (1973) Dye exclusion tests for cell viability. In: Kruse PF, Patterson MK (eds) Tissue culture. Academic, London, pp 406–408

    Chapter  Google Scholar 

  42. Vaughn JL (1976) The production of nuclear polyhedrosis viruses in large-volume cell cultures. J Invertebr Pathol 28:233–237

    Article  Google Scholar 

  43. Pushparajan C (2015) Development and optimization of an in vitro process for the production of Oryctes nudivirus in insect cell cultures. Ph.D. thesis, University of Canterbury, Christchurch

    Google Scholar 

  44. Ikonomou L, Drugmand J-C, Bastin G, Schneider Y-J, Agathos SN (2002) Microcarrier culture of lepidopteran cell lines: implications for growth and recombinant protein production. Biotechnol Prog 18:1345–1355

    Article  CAS  PubMed  Google Scholar 

  45. Lazar A, Silberstein L, Reuveny S, Mizrahi A (1987) Microcarriers as a culturing system of insect cells and insect viruses. Dev Biol Stand 66:315–323

    CAS  PubMed  Google Scholar 

  46. Sandford KK, Earle WR, Evans JE, Waltz HK, Shannon JE (1951) The measurement of proliferation in tissue cultures by enumeration of cell nuclei. J Natl Cancer Inst 11:773–795

    Google Scholar 

  47. Van Wezel AL (1973) Microcarrier cultures of animal cells. In: Kruse PF, Patterson MK (eds) Tissue culture: methods and applications. Academic, New York, NY, p 372

    Chapter  Google Scholar 

  48. Reed LJ, Muench H (1938) A simple method of estimating 50% endpoints. Am J Epidemiol 27:493–497

    Google Scholar 

  49. Huynh HT, Tran TTB, Chan LCL, Nielsen LK, Reid S (2013) Decline in baculovirus-expressed recombinant protein production with increasing cell density is strongly correlated to impairment of virus replication and mRNA expression. Appl Microbiol Biotech 97:5245–5257

    Article  CAS  Google Scholar 

  50. Huynh HT, Chan LCL, Tran TTB, Nielsen LK, Reid S (2012) Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine. Biotechnol Prog 28:788–802

    Article  CAS  PubMed  Google Scholar 

  51. Agathos SN (2007) Development of serum free media for lepidopteran insect cell lines. In: Murhammer DW (ed) Baculovirus and insect cell expression protocols, 2nd edn. Humana, Totowa, NJ. ISBN 978-1-59745-457-5

    Google Scholar 

  52. Matindoost L, Chan LCL, Qi YM, Nielsen LK, Reid S (2012) Suspension culture titration: a simple method for measuring baculovirus titers. J Virol Methods 183:201–209

    Article  CAS  PubMed  Google Scholar 

  53. Jorio H, Tran R, Kamen A (2006) Stability of serum-free and purified baculovirus stocks under various storage conditions. Biotechnol Prog 22:319–325

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Reid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Reid, S., Chan, L.C.L., Matindoost, L., Pushparajan, C., Visnovsky, G. (2016). Cell Culture for Production of Insecticidal Viruses. In: Glare, T., Moran-Diez, M. (eds) Microbial-Based Biopesticides. Methods in Molecular Biology, vol 1477. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6367-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6367-6_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6365-2

  • Online ISBN: 978-1-4939-6367-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics