Skip to main content
Log in

Toxicity, membrane binding and uptake of the Sclerotinia sclerotiorum agglutinin (SSA) in different insect cell lines

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The fungal lectin purified from Sclerotinia sclerotiorum, further referred to as Sclerotinia sclerotiorum agglutinin or SSA, possesses insecticidal activity against important pest insects such as pea aphids (Acyrthosiphon pisum). This paper aims at a better understanding of its activity at cellular level. Therefore, different insect cell lines were treated with SSA. These cell lines were derived from different tissues and represent the three major orders of insects important in agriculture: CF-203 (midgut Choristoneura fumiferana, Lepidoptera), GUTAW1 (midgut, Helicoverpa zea, Lepidoptera), High5 cells (ovary, Trichoplusia ni, Lepidoptera), Sf9 (ovary cells from Spodoptera frugiperda, Lepidoptera), S2 (hemocyte, Drosophila melanogaster, Diptera), and TcA (whole body, Tribolium castaneum, Coleoptera). Although the sensitivity to SSA differs between the cell lines, SSA clearly showed toxicity in all six cell lines with median effect concentrations (EC50) ranging between 9 and 42 μg/ml. An in-depth analysis of the mechanism of uptake in the cells revealed superior amounts of FITC-SSA at the membrane of CF-203 cells compared to Sf9 cells, while a similar small amount of SSA was internalized in both cell lines. Pre-incubation with the clathrin-mediated endocytosis inhibitor phenylarsine oxide inhibited the internalization of SSA into the CF-203 and Sf9 cells with a respective reduction of 6- and 1.7-fold. The data are discussed in relation to the importance of cellular uptake mechanism for SSA binding and cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Arenas I, Bravo A, Soberón M, Gómez I (2010) Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 285:12497–12503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccia S, Van Damme EJM, De Vos WH, Smagghe G (2012) Mechanism of entomotoxicity of the plant lectin from Hippeastrum hybrid (Amaryllis) in Spodoptera littoralis larvae. J Insect Physiol 58:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Candy L, Van Damme EJM, Peumans WJ, Menu-Bouaouiche L, Erard M, Rouge P (2003) Structural and functional characterization of the GalNAc/Gal-specific lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum (Lib.) de Bary. Biochem Biophys Res Commun 308:396–402

    Article  CAS  PubMed  Google Scholar 

  • Gahan LJ, Pauchet Y, Vogel H, Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genet 6:e1001248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CL, Wang AA, Nabli H, McIntosh AH, Wittmeyer JL, Grasela JJ (2004) Development and partial characterization of heliothine cell lines from embryonic and differentiated tissues. In Vitro Cell Dev Biol Anim 40:89–94

    Article  CAS  PubMed  Google Scholar 

  • Goodman CL, Stanley D, Ringbauer JA Jr, Beeman RW, Silver K, Park Y (2012) A cell line derived from the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). In Vitro Cell Dev Biol Anim 48:426–433

    Article  PubMed  Google Scholar 

  • Granados RR, Li GX, Derksen ACG, Mckenna KA (1994) A new insect-cell line from Trichoplusia ni (Bti-Tn-5b1-4) susceptible to Trichoplusia ni single enveloped nuclear polyhedrosis-virus. J Invertebr Pathol 64:260–266

    Article  Google Scholar 

  • Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608

    Article  CAS  PubMed  Google Scholar 

  • Hamshou M, Smagghe G, Shahidi-Noghabi S, De Geyter E, Lannoo N, Van Damme EJM (2010a) Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem Mol Biol 40:883–890

    Article  CAS  PubMed  Google Scholar 

  • Hamshou M, Van Damme EJM, Smagghe G (2010b) Entomotoxic effects of fungal lectin from Rhizoctonia solani towards Spodoptera littoralis. Fungal Biol 114:34–40

    Article  CAS  PubMed  Google Scholar 

  • Hamshou M, Van Damme EJM, Vandenborre G, Ghesquière B, Trooskens G, Gevaert K, Smagghe G (2012) GalNAc/Gal-binding Rhizoctonia solani agglutinin has antiproliferative activity in Drosophila melanogaster S2 cells via MAPK and JAK/STAT signaling. PLoS One 7:e33680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamshou M, Van Damme EJM, Caccia S, Cappelle K, Vandenborre G, Ghesquière B, Gevaert K, Smagghe G (2013) High entomotoxicity and mechanism of the fungal GalNAc/Gal-specific Rhizoctonia solani lectin in pest insects. J Insect Physiol 59:295–305

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Adang MJ (2004) Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem 271:3127–3135

    Article  CAS  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Gould FL, Adang MJ (2002) Altered glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Appl Environ Microbiol 68:5711–5717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurat-Fuentes JL, Karumbaiah L, Jakka SRK, Ning C, Liu C, Wu K, Jackson J, Gould F, Blanco C, Portilla M, Perera O, Adang MJ (2011) Reduced levels of membrane-bound alkaline phosphatase are common to Lepidopteran stains resistant to Cry toxins from Bacillus thuringiensis. PLoS One 6:e17606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee X, Thompson A, Zhang Z, Ton-that H, Biesterfeldt J, Ogata C, Xu L, Johnston RA, Young NM (1998) Structure of the complex of Maclura pomifera agglutinin and the T-antigen disaccharide, Galβ1,3GalNAc. J Biol Chem 273:6312–6318

    Article  CAS  PubMed  Google Scholar 

  • Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473–483

    Article  CAS  PubMed  Google Scholar 

  • Perera OP, Willis JD, Adang MJ, Jurat-Fuentes JL (2009) Cloning and characterization of the Cry1Ac-binding alkaline phosphatase (HvALP) from Heliothis virescens. Insect Biochem Mol Biol 39:294–302

    Article  CAS  PubMed  Google Scholar 

  • Powell KS, Spence J, Bharathi M, Gatehouse JA, Gatehouse AMR (1998) Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown plant hopper, Nilaparvata lugens (Stal). J Insect Physiol 44:529–539

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi A, Smagghe G, Proost P, Van Damme EJM (2008) Ferritin acts as a target site for the snowdrop lectin (GNA) in the midgut of the cotton leafworm Spodoptera littoralis. Insect Sci 15:513–519

    Article  CAS  Google Scholar 

  • Sandvig K, van Deurs B (2000) Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives. EMBO J 19:5943–5950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sankaranarayanan R, Sekar K, Banerjee V, Sharma V, Surolia A, Vijayon M (1996) A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nat Struct Biol 3:596–603

    Article  CAS  PubMed  Google Scholar 

  • Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    CAS  PubMed  Google Scholar 

  • Schnitzer JE, Oh P, McIntosh DP (1996) Role of GTP hydrolysis in fission of caveolae directly from plasma membranes. Science 274:239–242

    Article  CAS  PubMed  Google Scholar 

  • Shahidi-Noghabi S, Van Damme EJ, Iga M, Smagghe G (2010) Exposure of insect midgut cells to Sambucus nigra L. agglutinins I and II causes cell death via caspase-dependent apoptosis. J Insect Physiol 56:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Shahidi-Noghabi S, Van Damme EJM, De Vos WH, Smagghe G (2011) Internalization of Sambucus nigra agglutinins I and II in insect midgut CF-203 cells. Arch Insect Biochem Physiol 76:211–222

    Article  CAS  PubMed  Google Scholar 

  • Smagghe G, Braeckman BP, Huys N, Raes H (2003) Cultured mosquito cells Aedes albopictus C6/36 (Dip., Culicidae) responsive to 20-hydroxyecdysone and non-steroidal ecdysone agonist. J Appl Entomol 127:167–173

    Article  CAS  Google Scholar 

  • Smagghe G, Goodman CL, Stanley D (2009) Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol Anim 45:93–105

    Article  PubMed  Google Scholar 

  • Sohi SS, Lalouette W, MacDonld JA, Gringorten JL, Budau CB (1993) Establishment of continuous midgut cell lines of spruce budworm (Lepidoptera:Tortricidae). In Vitro Cell Dev Biol 29:56A–56A

  • Soin T, Swevers L, Mosallanejad H, Efrose R, Labropoulou V, Iatrou K, Smagghe G (2008) Juvenile hormone analogs do not affect directly the activity of the ecdysteroid receptor complex in insect culture cell lines. J Insect Physiol 54:429–438

    Article  CAS  PubMed  Google Scholar 

  • Torgersen ML, Skretting G, van Deurs B, Sandvig K (2001) Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114:3737–3747

    CAS  PubMed  Google Scholar 

  • Van Damme EJM, Peumans WJ, Barre A, Rougé P (1998) Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17:575–692

    Article  Google Scholar 

  • Van Damme EJM, Lannoo N, Peumans WJ (2008) Plant lectins. Adv Bot Res 48:107–209

    Article  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550

    Article  CAS  PubMed  Google Scholar 

  • Vaughn JL, Goodwin RH, Tompkins GJ, McCawley P (1977) The establishment of two cell lines from the insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 13:213–217

    Article  CAS  PubMed  Google Scholar 

  • Walski T, Van Damme EJM, Smargiasso N, Christiaens O, De Pauw E, Smagghe G (2016) Protein N-glycosylation and N-glycan trimming are required for postembryonic development of the pest beetle Tribolium castaneum. Sci Rep 6:35151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walski T, De Schutter K, Van Damme EJM, Smagghe G (2017) Diversity and functions of protein glycosylation in insects. Insect Biochem Mol Biol 83:21–34

    Article  CAS  PubMed  Google Scholar 

  • Wilkins S, Billingsley PF (2001) Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito Anopheles stephensi Liston. Insect Biochem Mol Biol 31:937–948

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support of the Research Council of Ghent University (BOF-UGent) and the Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium). Ying Shen is a recipient of a doctoral grant from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Smagghe.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

Supplementary Fig. 1

Effect of different concentrations of SSA on the six insect cell lines. GUTAW1 (A), CF-203 (B), High5 (C), Sf9 (D), S2 (D) and TcA (F) cells were incubated with different concentrations of SSA for 4 days at 27 °C. Data are presented as mean % total cell viability ± SE, based on 2 biological repeats with each 5 technical replicates. (GIF 33 kb)

High resolution image (TIFF 9059 kb)

Supplementary Fig. 2

Confocal imaging of CF-203 (A-C) and Sf9 cells (D-F), untreated (A, D) or after a 10-min-incubation with 0.1 μg/ml FITC (B, E) or 10.2 μg/ml of SSA (C, F). (GIF 151 kb)

High resolution image (TIFF 11766 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., De Schutter, K., Walski, T. et al. Toxicity, membrane binding and uptake of the Sclerotinia sclerotiorum agglutinin (SSA) in different insect cell lines. In Vitro Cell.Dev.Biol.-Animal 53, 691–698 (2017). https://doi.org/10.1007/s11626-017-0176-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-017-0176-8

Keywords

Navigation