Skip to main content
Log in

Sp1 upregulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Type XI collagen is a cartilage-specific extracellular matrix, and is important for collagen fibril formation and skeletal morphogenesis. We have previously reported that NF-Y regulated the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes (Hida et. al. In Vitro Cell. Dev. Biol. Anim. 2014). However, the mechanism of the Col11a1 gene regulation in chondrocytes has not been fully elucidated. In this study, we further characterized the proximal promoter activity of the mouse Col11a1 gene in chondrocytes. Cell transfection experiments with deletion and mutation constructs indicated that the downstream region of the NF-Y binding site (-116 to +1) is also necessary to regulate the proximal promoter activity of the mouse Col11a1 gene. This minimal promoter region has no TATA box and GC-rich sequence; we therefore examined whether the GC-rich sequence (-96 to -67) is necessary for the transcription regulation of the Col11a1 gene. Luciferase assays using a series of mutation constructs exhibited that the GC-rich sequence is a critical element of Col11a1 promoter activity in chondrocytes. Moreover, in silico analysis of this region suggested that one of the most effective candidates was transcription factor Sp1. Consistent with the prediction, overexpression of Sp1 significantly increased the promoter activity. Furthermore, knockdown of Sp1 expression by siRNA transfection suppressed the proximal promoter activity and the expression of endogenous transcript of the mouse Col11a1 gene. Taken together, these results indicate that the transcription factor Sp1 upregulates the proximal promoter activity of the mouse Col11a1 gene in chondrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Akiyama H (2008) Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol 18:213–9

    Article  CAS  PubMed  Google Scholar 

  • Annunen S, Körkkö J, Czarny M, Warman ML, Brunner HG, Kääriäinen H, Mulliken JB, Tranebjaerg L, Brooks DG, Cox GF, Cruysberg JR, Curtis MA, Davenport SL, Friedrich CA, Kaitila I, Krawczynski MR, Latos-Bielenska A, Mukai S, Olsen BR, Shinno N, Somer M, Vikkula M, Zlotogora J, Prockop DJ, Ala-Kokko L (1999) Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. Am J Hum Genet 65:974–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bell DM, Leung KK, Wheatley SC, Ng LJ, Zhou S, Ling KW, Sham MH, Koopman P, Tam PP, Cheah KS (1997) SOX9 directly regulates the type-II collagen gene. Nat Gent 16:174–8

    Article  CAS  Google Scholar 

  • Bridgewater LC, Lefebvre V, de Crombrugghe B (1998) Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J Biol Chem 273:14998–5006

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–52

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • de Crombrugghe B, Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W (2000) Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 19:389–94

    Article  PubMed  Google Scholar 

  • Dharmavaram RM, Liu G, Mowers SD, Jimenez SA (1997) Detection and characterization of Sp1 binding activity in human chondrocytes and its alterations during chondrocyte dedifferentiation. J Biol Chem 272:26918–25

    Article  CAS  PubMed  Google Scholar 

  • Dikstein R (2011) The unexpected traits associated with core promoter elements. Transcription 5:201–206

    Article  Google Scholar 

  • Dolfini D, Gatta R, Mantovani R (2012) NF-Y and the transcriptional activation of CCAAT promoters. Crit Rev Biochem Mol Biol 47:29–49

    Article  CAS  PubMed  Google Scholar 

  • Exposito JY, Valcourt U, Cluzel C, Lethias C (2010) The fibrillar collagen family. Int J Mol Sci 11:407–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fang M, Jacob R, McDougal O, Oxford JT (2012) Minor fibrillar collagens, variable regions, alternative splicing, intrinsic disorder, and tyrosine sulfation. Protein Cell 3:419–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • García-Ruiz I, de la Torre P, Díaz T, Esteban E, Fernández I, Muñoz-Yagüe T, Solís-Herruzo JA (2002) Sp1 and Sp3 transcription factors mediate malondialdehyde-induced collagen alpha 1(I) gene expression in cultured hepatic stellate cells. J Biol Chem 277:30551–8

    Article  PubMed  Google Scholar 

  • Ge Y, Jensen TL, Matherly LH, Taub JW (2002) Synergistic regulation of human cystathionine-beta-synthase-1b promoter by transcription factors NF-YA isoforms and Sp1. Biochim Biophys Acta 1579:73–80

    Article  CAS  PubMed  Google Scholar 

  • Genzer MA, Bridgewater LC (2007) A Col9a1 enhancer element activated by two interdependent SOX9 dimers. Nucleic Acids Res 35:1178–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghayor C, Herrouin JF, Chadjichristos C, Ala-Kokko L, Takigawa M, Pujol JP, Galéra P (2000) Regulation of human COL2A1 gene expression in chondrocytes. Identification of C-Krox-responsive elements and modulation by phenotype alteration. J Biol Chem 275:27421–38

    CAS  PubMed  Google Scholar 

  • Ghayor C, Chadjichristos C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, Galera P (2001) Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. J Biol Chem 276:36881–95

    Article  CAS  PubMed  Google Scholar 

  • Goto T, Matsui Y, Fernandes RJ, Hanson DA, Kubo T, Yukata K, Michigami T, Komori T, Fujita T, Yang L, Eyre DR, Yasui N (2006) Sp1 family of transcription factors regulates the human alpha2 (XI) collagen gene (COL11A2) in Saos-2 osteoblastic cells. J Bone Miner Res 21:661–73

    Article  CAS  PubMed  Google Scholar 

  • Hida M, Hamanaka R, Okamoto O, Yamashita K, Sasaki T, Yoshioka H, Matsuo N (2014) Nuclear factor Y (NF-Y) regulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell Dev Biol Anim 50:358–66

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Chan DA, Jia F, Xie X, Li Z, Hoyt G, Robbins RC, Chen X, Giaccia AJ, Wu JC (2008) Short hairpin RNA interference therapy for ischemic heart disease. Circulation 118:S226–33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kahler RA, Yingst SM, Hoeppner LH, Jensen ED, Krawczak D, Oxford JT, Westendorf JJ (2008) Collagen 11a1 is indirectly activated by lymphocyte enhancer-binding factor 1 (Lef1) and negatively regulates osteoblast maturation. Matrix Biol 27:330–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kypriotou M, Beauchef G, Chadjichristos C, Widom R, Renard E, Jimenez SA, Korn J, Maquart FX, Oddos T, Von Stetten O, Pujol JP, Galéra P (2007) Human collagen Krox up-regulates type I collagen expression in normal and scleroderma fibroblasts through interaction with Sp1 and Sp3 transcription factors. J Biol Chem 282:32000–14

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Lacerda DA, Warman ML, Beier DR, Yoshioka H, Ninomiya Y, Oxford JT, Morris NP, Andrikopoulos K, Ramirez F, Wardell BB, Lifferth GD, Teuscher C, Woodward SR, Taylor BA, Seegmiller RE, Olsen BR (1995) A fibrillar collagen gene, Col11a1, is essential for skeletal morphogenesis. Cell 80:423–30

    Article  CAS  PubMed  Google Scholar 

  • Lincoln J, Florer JB, Deutsch GH, Wenstrup RJ, Yutzey KE (2006) ColVa1 and ColXIa1 are required for myocardial morphogenesis and heart valve development. Dev Dyn 235:3295–305

    Article  CAS  PubMed  Google Scholar 

  • Lincoln J, Kist R, Scherer G, Yutzey KE (2007) Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development. Dev Biol 305:120–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Li H, Tanaka K, Tsumaki N, Yamada Y (2000) Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the alpha2(XI) collagen gene. J Biol Chem 275:12712–8

    Article  CAS  PubMed  Google Scholar 

  • Matsuo N, Yu-Hua W, Sumiyoshi H, Sakata-Takatani K, Nagato H, Sakai K, Sakurai M, Yoshioka H (2003) The transcription factor CCAAT-binding factor CBF/NF-Y regulates the proximal promoter activity in the human a1(XI) collagen gene (COL11A1). J Biol Chem 278:32763–70

    Article  CAS  PubMed  Google Scholar 

  • Mendler M, Eich-Bender SG, Vaughan L, Winterhalter KH, Bruckner P (1989) Cartilage contains mixed fibrils of collagen types II, IX, and XI. J Cell Biol 108:191–7

    Article  CAS  PubMed  Google Scholar 

  • Myllyharju J, Kivirikko KI (2001) Collagen and collagen-related diseases. Ann Med 33:7–21

    Article  CAS  PubMed  Google Scholar 

  • Niebler S, Bosserhoff AK (2013) The transcription factor activating enhancer-binding protein epsilon (AP-2ε) regulates the core promoter of type II collagen (COL2A1). FEBS J 280:1397–408

    Article  CAS  PubMed  Google Scholar 

  • Ortuño MJ, Susperregui AR, Artigas N, Rosa JL, Ventura F (2013) Osterix induces Col1a1 gene expression through binding to Sp1 sites in the bone enhancer and proximal promoter regions. Bone 52:548–56

    Article  PubMed  Google Scholar 

  • Page PB, Stromberg AJ (2011) Linear methods for analysis and quality control of relative expression ratios from quantitative real-time polymerase chain reaction experiments. Sci World J 11:1383–1393

    Article  CAS  Google Scholar 

  • Renard E, Porée B, Chadjichristos C, Kypriotou M, Maneix L, Bigot N, Legendre F, Ollitrault D, De Crombrugghe B, Malléin-Gérin F, Moslemi S, Demoor M, Boumediene K, Galéra P (2012) Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med 90:649–66

    Article  CAS  PubMed  Google Scholar 

  • Ricard-Blum S (2012) The collagen family, Extracellular matrix biology. Gold Spring Harbor Laboratory Press, New York, pp 45–63

    Google Scholar 

  • Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB (2003) Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1 beta. J Biol Chem 278:17688–700

    Article  CAS  PubMed  Google Scholar 

  • Tompson SW, Bacino CA, Safina NP, Bober MB, Proud VK, Funari T, Wangler MF, Nevarez L, Ala-Kokko L, Wilcox WR, Eyre DR, Krakow D, Cohn DH (2010) Fibrochondrogenesis results from mutations in the COL11A1 type XI collagen gene. Am J Hum Genet 87:708–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu YF, Matsuo N, Sumiyoshi H, Yoshioka H (2010a) Sp7/Osterix is involved in the up-regulation of the mouse pro-α1(V) collagen gene (Col5a1) in osteoblastic cells. Matrix Biol 29:701–6

    Article  CAS  PubMed  Google Scholar 

  • Wu YF, Matsuo N, Sumiyoshi H, Yoshioka H (2010b) Sp7/Osterix up-regulates the mouse pro-alpha3(V) collagen gene (Col5a3) during the osteoblast differentiation. Biochem Biophys Res Commun 394:503–8

    Article  CAS  Google Scholar 

  • Yamada K, Tanaka T, Miyamoto K, Noguchi T (2000) Sp family members and nuclear factor-Y cooperatively stimulate transcription from the rat pyruvate kinase M gene distal promoter region via their direct interactions. J Biol Chem 275:18129–37

    Article  CAS  PubMed  Google Scholar 

  • Yano H, Hamanaka R, Nakamura-Ota M, Adachi S, Zhang JJ, Matsuo N, Yoshioka H (2014) Sp7/Osterix induces the mouse pro-α2(I) collagen gene (Col1a2) expression via the proximal promoter in osteoblastic cells. Biochem Biophys Res Commun 452:531–6

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Jimenez SA, Stokes DG (2003) Regulation of human COL9A1 gene expression: activation of the proximal promoter region by SOX9. J Biol Chem 278:117–23

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Meng A (2005) Sp1-like transcription factors are regulators of embryonic development in vertebrates. Dev Growth Differ 47:201–11

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Lefebvre V, Zhang Z, Eberspaecher H, de Crombrugghe B (1998) Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J Biol Chem 273:14989–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. H Satoh for the technical support, and the staff members of the Research Promotion Institute, Oita University. This work was supported by Grants-In-Aid for Scientific Research (No. 21591952 to N.M.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noritaka Matsuo.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, K., Hida, M., Sasaki, T. et al. Sp1 upregulates the proximal promoter activity of the mouse collagen α1(XI) gene (Col11a1) in chondrocytes. In Vitro Cell.Dev.Biol.-Animal 52, 235–242 (2016). https://doi.org/10.1007/s11626-015-9959-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9959-y

Keywords

Navigation