Skip to main content
Log in

Primary culture and characteristic morphologies of neurons from the cerebral ganglion of the mud crab, Scylla paramamosain

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Crustacean neurons, obtained from the cerebral ganglion of the mud crab Scylla paramamosain, were successfully cultured in vitro. They maintained typical morphological characteristics and showed better outgrowth in modified Medium 199 (M199) medium than that in Liebowitz’s L-15 medium. Fetal bovine serum (FBS), muscle extracts, and hemolymph of the mud crab S. paramamosain were added as supplements. Only 20% FBS could promote neuron outgrowth, while muscle extracts and hemolymph of S. paramamosain did not improve neuron outgrowth. For cell dissociation, both collagenase type I and trypsin worked well as determined by initial cell viability and following cell outgrowth potential. More than six kinds of cells with different morphological characteristics were identified in the neuron outgrowth. They were “small cells”, “veilers”, “branchers”, “multipolar cells”, “super-large cell”, and “bipolar cells”. Among all of the cells, bipolar cells were identified for the first time in crustacean neurons culture and they could live longer than other cells. The neurons could grow for more than a week before retraction and eventual degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Similar content being viewed by others

References

  • Chen S. N.; Wang C. S. Establishment of cell culture systems from penaeid shrimp and their susceptibility to white spot disease and yellow head viruses. Method Cell Sci. 21: 199–206; 1999.

    Article  CAS  Google Scholar 

  • Cooke I. M.; Graf S.; Grau S.; Haylett B.; Meyers D.; Ruben P. Crustacean peptidergic neurons in culture show immediate outgrowth in simple medium. Proc. Natl Acad. Sci. U S A 86: 402–406; 1989.

    Article  CAS  PubMed  Google Scholar 

  • David A. R.; Stillman D. L.; Cooper E. L. In vitro culture of tissue from the tunicate Styela clava. In Vitro Cell. Dev. Biol. 26: 962–970; 1990.

    Article  Google Scholar 

  • Davis C. W.; Hagadorn I. R. Neuroendocrine control of Na+ balance in the fiddler crab Uca pugilator. Am. J. Physiol. Regul. Integr. Comp. Physiol. 242: R505–R513; 1982.

    CAS  Google Scholar 

  • Eastman-Reks S.; Fingerman M. Effects of neuroendocrine tissue and cyclic AMP on ovarian growth in vivo and in vitro in the fiddler crab, Uca pugilator. Comp. Biochem. Physiol. A 79: 679–684; 1984.

    Article  Google Scholar 

  • Elpidio C. N.; Yuanan L.; Philip C. Primary culture of lymphoid, nerve, and ovary cells from Penaeus stylirostris and Penaeus vannamei. In Vitro Cell. Dev. Biol. 29: 620–622; 1999.

    Google Scholar 

  • Gao C. L.; Sun J. S.; Xiang J. H. Primary culture and characteristic morphologies of medulla terminalis neurons in the eyestalks of Chinese shrimp, Fenneropenaeus chinensis. J. Exp. Mar. Biol. Ecol. 290: 71–80; 2003.

    Article  Google Scholar 

  • Gomez R. Acceleration of development of gonads by implantation of brain in the crab Paratelphusa hydrodromous. Naturwissenschaften 52: 216; 1965.

    Article  Google Scholar 

  • Graf R. A.; Cooke I. M. Primary culture of crustacean stomatogastric ganglion neurons in a defined medium. J. Exp. Biol. 149: 521–525; 1990.

    CAS  PubMed  Google Scholar 

  • Grau S. M.; Cooke I. M. Peptidergic neurons of the crab, Cardisoma carnifes, in defined culture maintain characteristic morphologies under a variety of conditions. Cell Tissue Res. 270: 303–317; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Huang H. Y.; Li S. J.; Wang G. Z.; Ye H. H. Study on the histology of the neurosecretory cells in the brain of Scylla serrata. J. Xiamen Univ. Nat. Sci. (In chinese) 40(3): 793–797; 2001.

    Google Scholar 

  • Huang H. Y.; Li S. J.; Ye H. H.; Wang G. Z. Ultrastructure of neurosecretory cells in the protocerebrum of Scylla serrata. Mar. Sci. 27: 17–19; 2003.

    Google Scholar 

  • Huang H. Y.; Ye H. H.; Li S. J.; Wang G. Z. Immunocytochemical localization of serotonin and neuropeptide Y in the brain of Scylla serrata. J. Fish China 29(4): 441–446; 2005.

    CAS  Google Scholar 

  • Kamemoto F. I.; Tullis R. E. Hydromineral regulation in decapods Crustacea. Gen. Comp. Endocr. Supp. 3: 299–307; 1972.

    Article  Google Scholar 

  • Kirchhof B.; Bicker G. Growth properties of larval and adult locust neurons in primary cell culture. J. Comp. Neurol. 323: 411–422; 1992.

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni G. K.; Fingerman M. Chromatophorotropic activity of extracts of the brain and nerve cord of the leech, Macrobdella decora, in the fiddler crab, Uca pugilator: an in vivo and in vitro study. Comp. Biochem. Phys. C 84: 369–372; 1986.

    Article  Google Scholar 

  • Kulkarni G. K.; Glade L.; Fingerman M. Oogensis and effects of neuroendocrine tissue on in vitro synthesis of protein by the ovary of the red swamp crayfish Procambarus Clarkia (Girard). J. Crustacean Biol. 11(4): 513–522; 1991.

    Article  Google Scholar 

  • Kulkarni G. K.; Nagabhushanam R.; Joshi P. K. Neuroendocrine control of reproduction in the male penaeid prawn, Parapenaeopsis hardwickii (Miers) (Crustacea, Decapoda, Penaeidae). Hydrobiologia 180: 281–28; 1984.

    Google Scholar 

  • Mocquare J. P.; Besse G.; Juchault P.; Legrand J. J.; Maissial N. G. Contribution a l’analyse du controle neurohumoral de la croissance, de la mue et de la physiologie sexuelle male et femelle chez l’ Oniscoide Ligia oceanica L. (Crustace, Isopode). Annales d’Embryologie et de Morphogenese 4: 45–63; 1971.

    Google Scholar 

  • Ostu T. Bihormonal control of sexual cycle in the freshwater crab, Potamon dehanni. Embryologia 8: 1–20; 1963.

    Article  Google Scholar 

  • Sashikumar A.; Desai P. V. Development of primary cell culture from Scylla serrata. Cytotechnology 56: 161–169; 2008.

    Article  PubMed  Google Scholar 

  • Saver M. A.; Wilkens J. L.; Syed N. I. In situ and in vitro identification and characterization of cardiac ganglion neurons in the crab, Carcinus maenas. J. Neurophysiol. 81: 2964–2976; 1999.

    CAS  PubMed  Google Scholar 

  • Smith P. J. S.; Howes E. A. Long-term culture of fully differentiated adult insect neurons. J. Neurosci. Method 69: 113–122; 1996.

    Article  CAS  Google Scholar 

  • Stephanyan R.; Hollins B.; Brock S. E.; McClintock T. S. Primary culture of lobster (Homarus americanus) olfactory sensory neurons. Chem. Senses 29: 179–187; 2004.

    Article  Google Scholar 

  • Sun J. S.; Liu A. X.; Chen J. T.; He B. J.; Wang X. L.; Guo S. Y.; Wang Y. N. Cytology and culture of neurosecretory cell in the eyestalk of Eriocheir sinensis. Acta Hydrobiol. Sinica 24(4): 374–381; 2000.

    Google Scholar 

  • Tong S. L.; Miao H. Z. Attempts to initiate cell cultures from Penaeus chinensis tissues. Aquaculture 47: 151–157; 1996.

    Article  Google Scholar 

  • Touir A. Données nouvelles concernant l'endocrinologie sexuelle des Crustacés Décapodes Natantia hermaphrodites et gonochoriques. III. Mise en évidence d'un contrôle neurohormonal du maintien de l'appareil génital mâle et des glandes androgènes exercé par le protocérébron médian.-Comptes Rendus Hebdomadaires de l'Académie des Sciences 285D: 539–542; 1977.

    Google Scholar 

  • Tullis R. E.; Kamemoto F. I. Separation and biological effects of CNS factors affecting water balance in the decapod crustacean Thalamita crenata. Gen. Comp. Endocrinol. 23(1): 19–28; 1974.

    Article  CAS  PubMed  Google Scholar 

  • Van den Bosch de Aguilar P. Neurosecretion et regulation hydroelectrolytique chez Artemia salina. Experientia 32: 228–229; 1976.

    Article  PubMed  Google Scholar 

  • Walton A.; Smith V. J. Primary culture of the hyaline haemocytes from marine decapods. Fish Shellfish Immun. 9: 181–194; 1999.

    Article  Google Scholar 

  • Weigel S (2005) Primary neuronal culture of Locusta migratoria for construction of networks on microelectronic recording devices. Diploma thesis. Germany: RWTH Aachen University

  • Ye H. H.; Huang H. Y.; Li S. J.; Wang G. Z. Immunological recognition of FSH and LH in the brain of Scylla serrata. Adv. Nat. Sci. 16(6): 768–770; 2006.

    Google Scholar 

  • Ye H. H.; Huang H. Y.; Li S. J.; Wang G. Z. Immunorecognition of estrogen and androgen receptors in the brain and thoracic ganglion mass of mud crab, Scylla paramamosain. Prog. Nat. Sci. 18: 691–895; 2008.

    Article  CAS  Google Scholar 

  • Zeng H, Ye HH, Li SJ, Wang GZ, Huang JR. Hepatopancreas cell cultures from mud crab, Scylla paramamosain. In Vitro Cell Dev Biol-Animal. 46: 431–437; 2010.

Download references

Funding

The National Natural Science Foundation of China under contract nos. 30300269 and 40776084, and the Program for New Century Excellent Talents in Fujian Province University.

Ethical standards

The experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihui Ye.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Ye, H., Ma, J. et al. Primary culture and characteristic morphologies of neurons from the cerebral ganglion of the mud crab, Scylla paramamosain . In Vitro Cell.Dev.Biol.-Animal 46, 708–717 (2010). https://doi.org/10.1007/s11626-010-9327-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-010-9327-x

Keywords

Navigation