Skip to main content
Log in

Effect of 17β-estradiol on the in vitro differentiation of murine embryonic stem cells into the osteogenic lineage

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Embryonic stem (ES) cells have the potential to differentiate into various cell types of the three germ layers. They are therefore a useful cell source for transplantation and tissue engineering. In the present paper, we studied the influences of ascorbic acid (AA), dexamethasone (Dex), and 17β-estradiol (E2) on the osteogenic differentiation of ES cells. Differentiation into the osteoblastic phenotype was demonstrated by the appearance of osteoblastic markers such as alkaline phosphatase (ALP), the transcription factor core binding factor alpha 1 (Cbfa1), and osteocalcin, which were detected by immunohistochemistry. Bone nodule formation, including the deposition of collagen fibrils and matrix mineralization, was studied by transmission electron microscopy. In all our cultures, a progressive upregulation of ALP activity was observed, followed by a decline after 21 d of culture. Cbfa1 was first detected after 14 d in culture and increased during the culture time. The addition of E2 resulted in a decrease in the formation of bone-like nodules in the embryoid bodies (EBs) compared with the EBs cultured in the presence of AA and AA supplemented with Dex. An increased osteocalcin concentration was observed in the EBs cultured with Dex and E2 compared with the EBs cultured in a control medium. EBs cultured in the presence of E2 resulted in a culture with a high amount of osteoblast-like cells not entrapped in bone-like nodules, creating the possibility to obtain a purified osteoblast population for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Ahn S. E.; Kim S.; Park K. H.; Moon S. H.; Lee H. J.; Kim G. J.; Lee Y. J.; Park K. H.; Cha K. Y.; Chung H. M. Primary bone-derived cells induce osteogenic differentiation without exogenous factors in human embryonic stem cells. Biochem. Biophys. Res. Commun 340: 403–408; 2006. doi:10.1016/j.bbrc.2005.12.020.

    Article  PubMed  CAS  Google Scholar 

  • Aubin J. E. Bone stem cells. J. Cell Biochem S31: 73–82; 1998. doi:10.1002/(SICI)1097-4644(1998)72:30/31+<73::AID-JCB11>3.0.CO;2-L.

    Article  Google Scholar 

  • Aubin, J. E.; Herbertson, A. Osteoblast lineage in experimental animals. In J. N. Beresford, E. Owen (Eds.), Marrow stromal cell culture. Cambridge University Press, Cambridge; 1998: pp. 88–110.

  • Aubin J. E.; Liu F.; Malaval L.; Gupta A. K. Osteoblast and chondroblast differentiation. Bone S17: 77–83; 1995. doi:10.1016/8756-3282(95)00183-E.

    Article  Google Scholar 

  • Beck G. R.; Zerler B.; Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. Proc. Natl. Acad. Sci. USA 97: 8352–8357; 2000. doi:10.1073/pnas.140021997.

    Article  PubMed  CAS  Google Scholar 

  • Beresford J. N.; Bennett J. H.; Devlin C.; Leboy P. S.; Owen M. E. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J. Cell Sci 102: 341–351; 1992.

    PubMed  CAS  Google Scholar 

  • Bourne S.; Polak J. M.; Hughes S. P.; Buttery L. D. Osteogenic differentiation of mouse embryonic stem cells: Differential gene expression analysis by cDNA microarray and purification of osteoblasts by cadherin-11 magnetically activated cell sorting. Tissue Eng 10: 796–806; 2004. doi:10.1089/1076327041348293.

    Article  PubMed  CAS  Google Scholar 

  • Bronson S. K. Bone nodule formation via in vitro differentiation of murine embryonic stem cells. Meth. Enzyme 365: 241–251; 2003.

    Article  CAS  Google Scholar 

  • Buttery L. D. K.; Bourne S.; Xynox J. D.; Wood H.; Hughes F. J.; Hughes S. P. F.; Episkopou V.; Polak J. M. Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng 7: 89–99; 2001. doi:10.1089/107632700300003323.

    Article  PubMed  CAS  Google Scholar 

  • Cao T.; Heng B. C.; Ye C. P.; Liu H.; Toh W. S.; Robson P.; Li P.; Hong Y. H.; Stanton L. W. Osteogenic differentiation within intact human embryoid bodies result in a marked increase in osteocalcin secretion after 12 d of in vitro culture, and the formation of morphologically distinct nodule-like structures. Tissue Cell 37: 325–334; 2005. doi:10.1016/j.tice.2005.03.008.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter M. K.; Inokuma M. S.; Denham J.; Mujtaba T.; Chiu C. P.; Rao M. S. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp. Neurol 172: 383–397; 2001. doi:10.1006/exnr.2001.7832.

    Article  PubMed  CAS  Google Scholar 

  • Chang D. J.; Ji C.; Kim K. K.; Casinghino S.; McCarthy T. L.; Centrella M. Reduction in transforming growth factor beta receptor 1 expression and transcription factor CBFA1 on bone cells by glucocorticoids. J. Biol. Chem 273: 4892–4896; 1998. doi:10.1074/jbc.273.9.4892.

    Article  PubMed  CAS  Google Scholar 

  • Chiba H.; Sawada N.; Oyamada M.; Kojima T.; Nomura S.; Ishii S.; Mori M. Relationship between the expression of the gap junction protein and osteoblast phenotype in a human osteoblastic cell line during cell proliferation. Cell. Struct. Funct 18: 419–426; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Chinzei R.; Tanaka Y.; Shimizu-Saito K.; Hara Y.; Kakinuma S.; Watanabe M.; Teramoto K.; Arii S.; Takase K.; Sato C.; Terada N.; Teraoka H. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology 36: 22–29; 2002. doi:10.1053/jhep.2002.34136.

    Article  PubMed  Google Scholar 

  • Dang Z. C.; Van Bezooijen R. L.; Karperien M.; Papapoulos S. E.; Löwik C. W. G. M. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J. Bone Miner. Res 17: 394–405; 2002. doi:10.1359/jbmr.2002.17.3.394.

    Article  PubMed  CAS  Google Scholar 

  • Dani C.; Smith A. G.; Dessolin S.; Leroy P.; Staccini L.; Villageois P.; Darimont C.; Ailhard G. Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell Sci 110: 1279–1285; 1997.

    PubMed  CAS  Google Scholar 

  • Declercq H. A.; Verbeeck R. M. H.; De Ridder L. I. F. J. M.; Schacht E. H.; Cornelissen M. J. Calcification as an indicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials 26: 4964–4974; 2005. doi:10.1016/j.biomaterials.2005.01.025.

    Article  PubMed  CAS  Google Scholar 

  • Doetschman T. C.; Eistetter H.; Katz M.; Schmidt W.; Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: Formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol 87: 27–45; 1985.

    PubMed  CAS  Google Scholar 

  • Donahue H. J.; Li Z.; Zhou Z.; Yellowley C. E. Differentiation of human fetal osteoblastic cells and gap junctional intercellular communication. Am. J. Physiol. Cell Physiol 278: C315–C322; 2000.

    PubMed  CAS  Google Scholar 

  • Duplomb L.; Daggouassat M.; Jourdan P. Differentiation of osteoblasts from mouse embryonic stem cells without generation of embryoid bodies. In vitro cellular and development biology. Animal 431: 21–24; 2007.

    CAS  Google Scholar 

  • Ernst M.; Schmid C. H.; Froesch E. R. Enhanced osteoblast proliferation and collagen gene expression by estradiol. Proc. Natl. Acad. Sci. U. S. A. 85: 2307–2310; 1998. doi:10.1073/pnas.85.7.2307.

    Article  Google Scholar 

  • Evans M. J.; Kaufman M. H. Establishment in culture of pluripotent cells from mouse embryos. Nature 293: 154–156; 1981. doi:10.1038/292154a0.

    Article  Google Scholar 

  • Franceschi R. T.; Iyer B. S.; Cui Y. Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. J. Bone Miner. Res 9: 843–854; 1994.

    PubMed  CAS  Google Scholar 

  • Gray T. K.; Flynn T. C.; Gray K. M.; Nabell L. M. 17β-estradiol acts directly on the clonal osteoblastic cell line UMR 106. Proc. Natl. Acad. Sci. U. S. A. 84: 6267–6271; 1987. doi:10.1073/pnas.84.17.6267.

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S.; Zannettino A. C. W.; Graves S. E.; Ohta S.; Hay S. J.; Simmons P. J. Differential cell surface expression of STRO-1 and alkaline phosphatase antigens on discrete development stages in primary cultures of human bone cells. J. Bone Miner. Res 14: 47–56; 1999. doi:10.1359/jbmr.1999.14.1.47.

    Article  PubMed  CAS  Google Scholar 

  • Heng B. C.; Cao T.; Stanton L. W.; Robson P.; Olsen B. Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J. Bone Miner. Res 19: 1379–1394; 2004. doi:10.1359/JBMR.040714.

    Article  PubMed  CAS  Google Scholar 

  • Hong S. H.; Nah H. Y.; Lee Y. J.; Lee J. W.; Park J. H.; Kim S. J.; Lee J. B.; Yoon H. S.; Kim C. H. Expression of estrogen receptor-alpha and-beta, glucocorticoid receptor, and progesterone receptor genes in human embryonic stem cells and embryoid bodies. Mol. Cells 18: 320–325; 2004.

    PubMed  CAS  Google Scholar 

  • Igarashi M.; Kamiya N.; Hasegawa M.; Kasuya T.; Takahashi T.; Takagi M. Inductive effects of dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of cultured primary rat osteoblasts. J. Mol. Histol 35: 3–10; 2004. doi:10.1023/B:HIJO.0000020883.33256.fe.

    Article  PubMed  CAS  Google Scholar 

  • Kanno S.; Hirano S.; Kayama F. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology 196: 137–145; 2004. doi:10.1016/j.tox.2003.12.002.

    Article  PubMed  CAS  Google Scholar 

  • Karp J. M.; Ferreira L. S.; Khademhosseini A.; Kwon A. H.; Yeh J.; Langer R. S. Cultivation of human embryonic stem cells without the embryoid step enhances osteogenesis in vitro. Stem Cells 244: 835–843; 2006. doi:10.1634/stemcells.2005-0383.

    Article  PubMed  Google Scholar 

  • Kawaguchi J.; Mee P. J.; Smith A. G. Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36: 758–769; 2005. doi:10.1016/j.bone.2004.07.019.

    Article  PubMed  CAS  Google Scholar 

  • Keeting P. E.; Scott R. E.; Colvard D. S.; Han I. K.; Spelberg T. C.; Riggs B. L. Lack of a direct effect estrogen on proliferation and differentiation of normal human osteoblast-like cells. J. Bone Miner. Res 6: 297–304; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Kelly K. A.; Gimble J. M. 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology 139: 2622–2628; 1998. doi:10.1210/en.139.5.2622.

    Article  PubMed  CAS  Google Scholar 

  • Kim D.; Gu Y.; Ishii M.; Fujimiya M.; Qi M.; Nakamura N.; Yoshikawa T.; Sumi S.; Inoue K. In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 27: E34–E41; 2003. doi:10.1097/00006676-200308000-00021.

    Article  PubMed  Google Scholar 

  • Kramer J.; Hegert C.; Guan K.; Wobus A. M.; Muller P. K.; Rohwedel J. Embryonic stem cell-derived chondrogenic differentiation in vitro: Activation by BMP-2 and BMP-4. Mech. Dev 92: 193–205; 2000. doi:10.1016/S0925-4773(99)00339-1.

    Article  PubMed  CAS  Google Scholar 

  • Kramer J.; Hegert C.; Rohwedel J. In vitro differentiation of mouse ES cells: Bone and cartilage. Meth. Enzym 365: 251–268; 2003. doi:10.1016/S0076-6879(03)65018-4.

    Article  PubMed  CAS  Google Scholar 

  • Kuai X. L.; Cong X. Q.; Li X. L.; Xiao S. D. Generation of hepatocytes from cultured mouse embryonic stem cells. Liver Transplant 9: 1094–1099; 2003. doi:10.1053/jlts.2003.50207.

    Article  Google Scholar 

  • Lumelsky N.; Blondel O.; Laeng P.; Velasco I.; Ravin R.; McKay R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292: 1389–1394; 2001. doi:10.1126/science.1058866.

    Article  PubMed  CAS  Google Scholar 

  • Maltsev V. A.; Rohwedel J.; Hescheler J.; Wobus M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusoidal, atrial and ventricular cell types. Mech. Dev 44: 41–50; 1993. doi:10.1016/0925-4773(93)90015-P.

    Article  PubMed  CAS  Google Scholar 

  • Martin G. R. Isolation of a pluripotent cell line from early mouse embryo’s cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U. S. A. 78: 7634–7638; 1981. doi:10.1073/pnas.78.12.7634.

    Article  PubMed  CAS  Google Scholar 

  • Ogston N.; Harrison A. J.; Cheung H. F. J.; Ashton B. A.; Hampson G. Dexamethasone and retinoic acid differentially regulate growth and differentiation in an immortalized human clonal bone marrow stromal cell line with osteoblastic characteristics. Steroids 67: 895–906; 2002. doi:10.1016/S0039-128X(02)00054-5.

    Article  PubMed  CAS  Google Scholar 

  • Phillips B. W.; Belmonte N.; Vernochet C.; Ailhaud G.; Dani C. Compactin enhances osteogenesis in murine embryonic stem cells. Biochem. Biophys. Res. Commun 284: 478–484; 2001. doi:10.1006/bbrc.2001.4987.

    Article  PubMed  CAS  Google Scholar 

  • Plant A.; Samuels A.; Perry M. J.; Colley S.; Gibson R.; Tobias J. H. Estrogen-induced osteogenesis in mice is associated with the appearance of Cbfa1-expressing bone marrow cells. J. Cell Biochem 84: 285–294; 2002. doi:10.1002/jcb.10021.

    Article  PubMed  CAS  Google Scholar 

  • Price P. A.; Baukol S. A. 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J. Biol. Chem 255: 11660–11663; 1980.

    PubMed  CAS  Google Scholar 

  • Qu Q.; Perälä-Heape M.; Kapanen A.; Dahllud J.; Salo J.; Väänänen H. K.; Härkönen P. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 22: 201–209; 1998. doi:10.1016/S8756-3282(97)00276-7.

    Article  PubMed  CAS  Google Scholar 

  • Rambhatla L.; Chiu C. P.; Kundu P.; Peng Y.; Carpenter M. K. Generation of hepatocyte-like cells from human embryonic stem cells. Cell Transplant 12: 1–11; 2003. doi:10.3727/000000003783985179.

    Article  PubMed  Google Scholar 

  • Risau W.; Sariola H.; Zerwes H. G.; Sasse J.; Ekblom P.; Kemler R.; Doetschmen T. Vasculogenesis and angiogenesis in embryonic stem cell-derived embryoid bodies. Development 102: 471–478; 1988.

    PubMed  CAS  Google Scholar 

  • Rogers J. J.; Young H. E.; Adkinson L. R.; Lucas P. A.; Black A. C. Jr. Differentiation factors induce expression of muscle, fat, cartilage, and bone in a clone of mouse pluripotent mesenchymal stem cells. Am. Surg 61: 231–236; 1995.

    PubMed  CAS  Google Scholar 

  • Rudnicki M. A.; McBurney M. W. Cell culture methods and induction of differentiation of embryonal cell lines. In: RobertsonE. D. (ed) Teratocarcinoma and embryonic stem cells: A practical approach. IRL, Washington, pp 19–49; 1983.

    Google Scholar 

  • Schuldiner M.; Eiges R.; Eden A.; Yanuka O.; Itskovitz-Eldor J.; Goldstein R. S.; Benvenisty N. Induced neuronal differentiation of human embryonic stem cells. Brain Res 913: 201–205l; 2001. doi:10.1016/S0006-8993(01)02776-7.

    Article  PubMed  CAS  Google Scholar 

  • Sottile V.; Thomson A.; McWhir J. In vitro osteogenic differentiation of human ES cells. Cloning and Stem Cells 5: 149–155; 2003. doi:10.1089/153623003322234759.

    Article  PubMed  CAS  Google Scholar 

  • Stavridis M.; Smith A. G. Neural differentiation of mouse embryonic stem cells. Biochem. Soc. Trans 31: 45–49; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Stein G. S.; Lian J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev 14: 424–442; 1993. doi:10.1210/er.14.4.424.

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen J. P.; van Driel M.; van den Bemd G. J.; Pols H. A. Vitamin D control of osteoblast function and bone extracellular matrix mineralization. Crit. Rev. Eukaryot. Gene Expr 11: 199–226; 2001.

    PubMed  Google Scholar 

  • Vander Molen M. A.; Rubin C. T.; McLeod K. J.; McCauley L. K.; Donahue H. J. Gap junctional intercellular communication contributes to hormonal responsiveness in osteoblastic networks. J. Biol. Chem 271: 12165–12171; 1996. doi:10.1074/jbc.271.43.27125.

    Article  PubMed  CAS  Google Scholar 

  • Wang R.; Clark R.; Bautch V. L. Embryonic stem cell-derived cystic embryoid bodies form vascular channels: An in vitro model of blood vessel development. Development 114: 303–316; 1994.

    Google Scholar 

  • Williams R. L.; Hilton D. J.; Pease S.; Willson T. A.; Stewart C. L.; Gearing D. P.; Wagner E. F.; Metcalf D.; Nicola N. A.; Gough N. M. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336: 684–687; 1988. doi:10.1038/336684a0.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita J.; Itoh H.; Hirashima M.; Ogawa M.; Nishikawa S.; Yurugi T.; Naito M.; Nakao K.; Nishikawa S. I. Flk-1 positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408: 92–96; 2000. doi:10.1038/35040568.

    Article  PubMed  CAS  Google Scholar 

  • Zhang S. C.; Wernig M.; Duncan I. D.; Brustle O.; Thomson J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol 19: 1129–1133; 2001. doi:10.1038/nbt1201-1129.

    Article  PubMed  CAS  Google Scholar 

  • Zhou S.; Zilberman Y.; Wassermann K.; Bain S. D.; Sadovsky Y.; Gazit D. Estrogen modulates estrogen receptor alpha and beta expression, osteogenic activity, and apoptosis in mesenchymal stem cells (MSCs) of osteoporotic mice. J. Cell Biochem. 36: 144–155; 2001. doi:10.1002/jcb.1096.

    Article  Google Scholar 

  • Zur Nieden N. I.; Kempka G.; Ahr H. J. In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71: 18–27; 2003. doi:10.1046/j.1432-0436.2003.700602.x.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Aernoudt, R. Devos, and L. Pieters for their technical support. This work was supported by a grant from Ghent University (GOA project 2001, No. 12050701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cornelissen.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tielens, S., Wymeersch, F., Declercq, H. et al. Effect of 17β-estradiol on the in vitro differentiation of murine embryonic stem cells into the osteogenic lineage. In Vitro Cell.Dev.Biol.-Animal 44, 368–378 (2008). https://doi.org/10.1007/s11626-008-9126-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9126-9

Keywords

Navigation