Skip to main content
Log in

Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Recently, numerous scientific approaches have been explored to treat various diseases using stem cells. In 2006, induced pluripotent stem cell (iPSC) were introduced by Takahashi and Yamanaka and showed the potential of self-renewing and differentiation into all types of targeted cells in vitro. In this investigation, we studied the effect of testosterone (T) individually or in the presence of 17 β-estradiol (E2) on osteogenic differentiation of human iPSC (hiPSC) during 2 wk. The optimal concentrations of sex steroid hormones were examined by MTT assay and acridine orange (AO) staining. The impact of E2 and T either individually or together as a combination was examined by ALP activity; the content of total mineral calcium, by von Kossa and alizarin red staining. Additionally, the expression rate of osteogenic specific markers was studied via real-time RT-PCR and immunocytochemistry analyses at day 14 of differentiation. The obtained results illustrated that the differentiation medium supplemented with T-E2 increased not only the ALP enzyme activity and the content of calcium but also the osteogenic-related gene and protein expressions on the 14th day. Furthermore, the results were confirmed by mineralized matrix staining. In conclusion, these data suggest that T could be used as an effective factor for osteogenic induction of hiPSCs combined with the E2 in bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

Abbreviations

AR:

Androgen receptor

AO:

Acridine orange

AA:

Amino acids

cAMP:

Cyclic adenosine monophosphate

EB:

Ethidium bromide

ESCs:

Embryonic stem cells

E2:

17 β-Estradiol

hiPSCs:

Human induced pluripotent stem cells

T:

Testosterone

References

  • Almeida M, Laurent MR, Dubois V, Claessens F, O’Brien CA, Bouillon R, Vanderschueren D, Manolagas SC (2017) Estrogens and androgens in skeletal physiology and pathophysiology. Physiol Rev 97:135–187

    Article  Google Scholar 

  • Atabiekov I, Al-Hendy A, El Andaloussi A (2019) Stem cell therapy in regenerative medicine of reproductive diseases. In: Reis RL (ed) Encyclopedia of tissue engineering and regenerative medicine. Academic Press, Oxford, pp 161–167

    Google Scholar 

  • Baird A, Lindsay T, Everett A, Iyemere V, Paterson YZ, McClellan A, Henson FMD, Guest DJ (2018) Osteoblast differentiation of equine induced pluripotent stem cells. Biology open 7

  • Chan HJ, Petrossian K, Chen S (2016) Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and -resistant breast cancer cells. J Steroid Biochem Mol Biol 161:73–83

    Article  CAS  Google Scholar 

  • Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z (2007) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 14:806–814

    Article  CAS  Google Scholar 

  • De Oliveira DH, Fighera TM, Bianchet LC, Kulak CA, Kulak J (2012) Androgens and Bone Minerva Endocrinologica 37:305–314

    PubMed  Google Scholar 

  • Ding DC, Shyu WC, Lin SZ (2011) Mesenchymal stem cells. Cell Transplant 20:5–14

    Article  Google Scholar 

  • Duran J, Lagos D, Pavez M, Troncoso MF, Ramos S, Barrientos G, Ibarra C, Lavandero S, Estrada M (2017) Ca2+/calmodulin-dependent protein kinase II and androgen signaling pathways modulate MEF2 activity in testosterone-induced cardiac myocyte hypertrophy. Frontiers in Pharmacology 8

  • Ebrahimi M, Forouzesh M, Raoufi S, Ramazii M, Ghaedrahmati F, Farzaneh M (2020) Differentiation of human induced pluripotent stem cells into erythroid cells. Stem Cell Res Ther 11:483

    Article  CAS  Google Scholar 

  • E Eftekhari M Ghollasi R Halabian M Soltanyzadeh SE Enderami 2021 Nisin and non-essential amino acids: new perspective in differentiation of neural progenitors from human-induced pluripotent stem cells in vitro Hum Cellhttps://doi.org/10.1007/s13577-021-00537-9

  • Falahati-Nini A, Riggs BL, Atkinson EJ, O’Fallon WM, Eastell R, Khosla S (2000) Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Investig 106:1553–1560

    Article  CAS  Google Scholar 

  • Gavali S, Gupta MK, Daswani B, Wani MR, Sirdeshmukh R, Khatkhatay MI (2019) LYN, a key mediator in estrogen-dependent suppression of osteoclast differentiation, survival, and function. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1865:547–557

  • Glenske K, Schuler G, Arnhold S, Elashry MI, Wagner AS, Barbeck M, Neumann E, Müller-Ladner U, Schnettler R, Wenisch S (2019) Effects of testosterone and 17β-estradiol on osteogenic and adipogenic differentiation capacity of human bone-derived mesenchymal stromal cells of postmenopausal women. Bone reports 11:100226

  • Gupta V, Bhasin S, Guo W, Singh R, Miki R, Chauhan P, Choong K, Tchkonia T, Lebrasseur NK, Flanagan JN, Hamilton JA, Viereck JC, Narula NS, Kirkland JL, Jasuja R (2008) Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol 296:32–40

    Article  CAS  Google Scholar 

  • Halabian R, Moridi K, Korani M, Ghollasi M (2019) Composite nanoscaffolds modified with bio-ceramic nanoparticles (Zn2SiO4) prompted osteogenic differentiation of human induced pluripotent stem cells. International Journal of Molecular and Cellular Medicine 8:24–38

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammes SR, Levin ER (2019) Impact of estrogens in males and androgens in females. J Clin Investig 129:1818–1826

    Article  Google Scholar 

  • Hayashi M, Nakashima T, Yoshimura N, Okamoto K, Tanaka S, Takayanagi H (2019) Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metab 29:627-637.e625

    Article  CAS  Google Scholar 

  • Holzer G, Einhorn TA, Majeska RJ (2002) Estrogen regulation of growth and alkaline phosphatase expression by cultured human bone marrow stromal cells. Journal of Orthopaedic Research : Official Publication of the Orthopaedic Research Society 20:281–288

    Article  CAS  Google Scholar 

  • Hong L, Colpan A, Peptan IA (2006) Modulations of 17-β estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng 12:2747–2753

    Article  CAS  Google Scholar 

  • Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229

    Article  CAS  Google Scholar 

  • Jung JH, Fu X, Yang PC (2017) Exosomes generated from iPSC-derivatives: new direction for stem cell therapy in human heart diseases. Circ Res 120:407–417

    Article  CAS  Google Scholar 

  • Khalid AB, Krum SA (2016) Estrogen receptors alpha and beta in bone. Bone 87:130–135

    Article  CAS  Google Scholar 

  • Khosla S, Oursler MJ, Monroe DG (2012) Estrogen and the skeleton. Trends Endocrinol Metab 23:576–581

    Article  CAS  Google Scholar 

  • Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N (2014) MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep 41:2055–2066

    Article  CAS  Google Scholar 

  • Leskelä HV, Olkku A, Lehtonen S, Mahonen A, Koivunen J, Turpeinen M, Uusitalo J, Pelkonen O, Kangas L, Selander K, Lehenkari P (2006) Estrogen receptor alpha genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts. Bone 39:1026–1034

    Article  Google Scholar 

  • Liu G, David BT, Trawczynski M, Fessler RG (2020) Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Reviews and Reports 16:3–32

    Article  Google Scholar 

  • Michael H, Härkönen PL, Väänänen HK, Hentunen TA (2005) Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research 20:2224–2232

    Article  CAS  Google Scholar 

  • Mitchell A, Wanczyk H, Jensen T, Finck C (2019) Assessment of iPSC teratogenicity throughout directed differentiation toward an alveolar-like phenotype. Differentiation; Research in Biological Diversity 105:45–53

    Article  CAS  Google Scholar 

  • Mohamad NV, Soelaiman IN, Chin KY (2016) A concise review of testosterone and bone health. Clin Interv Aging 11:1317–1324

    Article  CAS  Google Scholar 

  • Mummery CL, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358

    Article  CAS  Google Scholar 

  • Nassar GN, Leslie SW (2020) Physiology. StatPearls Publishing, Treasure Island (FL), Testosterone

    Google Scholar 

  • Ohnuki M, Takahashi K (2015) Present and future challenges of induced pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 370:20140367

    Article  Google Scholar 

  • Pihlajamaa P, Sahu B, Jänne OA (2015) Determinants of receptor- and tissue-specific actions in androgen signaling. Endocr Rev 36:357–384

    Article  CAS  Google Scholar 

  • Rauch C, Feifel E, Kern G, Murphy C, Meier F, Parson W, Beilmann M, Jennings P, Gstraunthaler G, Wilmes A (2018) Differentiation of human iPSCs into functional podocytes. PloS one 13:e0203869

  • Riggs BL, Khosla S, Melton LJ 3rd (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302

    Article  CAS  Google Scholar 

  • Saad F, Röhrig G, von Haehling S, Traish A (2017) Testosterone deficiency and testosterone treatment in older men. Gerontology 63:144–156

    Article  CAS  Google Scholar 

  • Sharma D, Larriera AI, Palacio-Mancheno PE, Gatti V, Fritton JC, Bromage TG, Cardoso L, Doty SB, Fritton SP (2018) The effects of estrogen deficiency on cortical bone microporosity and mineralization. Bone 110:1–10

    Article  CAS  Google Scholar 

  • Shigehara K, Izumi K, Kadono Y, Mizokami A (2021) Testosterone and bone health in men: a narrative review. J Clin Med 10:530

    Article  CAS  Google Scholar 

  • Soltanyzadeh M, Ghollasi M, Halabian R, Shams M (2020) A comparative study of hBM-MSCs’ differentiation toward osteogenic lineage in the presence of progesterone and estrogen hormones separately and concurrently in vitro. Cell Biol Int 44:1701–1713

    Article  CAS  Google Scholar 

  • Syed F, Khosla S (2005) Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun 328:688–696

    Article  CAS  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  • Wang Z, Bao HW (2019) Cnidium lactone stimulates osteogenic differentiation of bone marrow mesenchymal stem cells via BMP-2/smad-signaling cascades mediated by estrogen receptor. American Journal of Translational Research 11:4984–4991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiren KM, Chapman Evans A, Zhang XW (2002) Osteoblast differentiation influences androgen and estrogen receptor-alpha and -beta expression. J Endocrinol 175:683–694

    Article  CAS  Google Scholar 

  • Wu X, Zhang M (2018) Effects of androgen and progestin on the proliferation and differentiation of osteoblasts. Exp Ther Med 16:4722–4728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yarrow JF, Wronski TJ, Borst SE (2015) Testosterone and adult male bone: actions independent of 5α-reductase and aromatase. Exerc Sport Sci Rev 43:222–230

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ms. Elahe Eftekhari for her assistance with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzieh Ghollasi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. The hiPSCs were purchased from The Stem Cell Technology Research Center.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 576 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmohammadi, R., Ghollasi, M., Kheirollahzadeh, F. et al. Osteogenic differentiation of human induced pluripotent stem cell in the presence of testosterone and 17 β-estradiol in vitro. In Vitro Cell.Dev.Biol.-Animal 58, 179–188 (2022). https://doi.org/10.1007/s11626-022-00652-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00652-3

Keywords

Navigation