Skip to main content
Log in

Osmotic stress induces terminal differentiation in cultured normal human epidermal keratinocytes

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The signals for epidermal differentiation and barrier formation are largely unknown. One possible signal is dehydration or osmotic stress. To test this hypothesis, we investigated the effects of osmotic stress on markers of differentiation of normal human keratinocytes in culture. Hyperosmotic stress treatment of normal human keratinocyte cultures by elevated sorbitol concentrations was observed to induce markers of terminal differentiation. Sorbitol was added to keratinocyte media at 50, 100, 200, and 300 mM final concentration. These concentrations of sorbitol induce a dehydration effect or osmotic stress on the keratinocytes. These sorbitol treatments increased the levels of messenger RNA for the differentiation markers involucrin, transglutaminase, and filaggrin as measured by reverse transcription-polymerase chain reaction. Keratin K1 and K10 and involucrin protein levels were also increased in normal human keratinocyte cultures exposed to increasing osmotic stress. These observations suggest that keratinocytes in the epidermis may use dehydration as a sign to trigger the differentiation of the skin barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.

Similar content being viewed by others

References

  • Aliaga, J. C.; Deschenes, C.; Beaulieu, J. F.; Calvo, E. L.; Rivard, N. Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am. J. Physiol. 277:G631–G641; 1999.

    PubMed  CAS  Google Scholar 

  • Batiza, A. F.; Schulz, T.; Masson, P. H. Yeast respond to hypotonic shock with a calcium pulse. J. Biol. Chem. 271:23357–23362; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Bernstam, L. I.; Vaughan, F. L.; Bernstein, I. A. Keratinocytes grown at the air–liquid interface. In Vitro Cell Dev. Biol. 22(12):695–705; 1986.

    Article  PubMed  CAS  Google Scholar 

  • Dascalu, A.; Matithyou, A.; Oron, Y.; Korenstein, R. A. Hyperosmotic stimulus elevates intracellular calcium and inhibits proliferation of a human keratinocyte cell line. J. Invest. Dermatol. 115:714–718; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Dove, S. K.; Cooke, F. T.; Douglas, M. R.; Sayers, L. G.; Parker, P. J.; Michell, R. H. Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–192; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez, E. Thymocyte development past the CD4(+)CD8(+) stage requires an active p38 mitogen-activated protein kinase. Blood 95:1356–1361; 2000.

    PubMed  CAS  Google Scholar 

  • Hennings, H.; Holbrook, K.; Steinert, P.; Yuspa, S. Growth and differentiation of mouse epidermal cells in culture: effects of extracellular calcium. Curr. Probl. Dermatol. 10:3–25; 1980.

    PubMed  CAS  Google Scholar 

  • Hollander, D. A.; Hakimi, M. Y.; Hartmann, A.; Wilhelm, K.; Windolf, J. The influence of hyperbaric oxygenation (HBO) on proliferation and differentiation on human keratinocyte culture. In Vitro Cell Dev. Biol. 1:261–269; 2000.

    CAS  Google Scholar 

  • Kopan, R.; Traska, G.; Fuchs, E. Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J. Cell Biol. 105:427–440; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Mak, V.H.; Cumpstone, M. B.; Kennedy, A. H.; Harmon, C. S.; Guy, R. H.; Potts, R. O. Barrier function of human keratinocytes cultures grown at the air–liquid interface. J. Invest. Dermatol. 96:323–327; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Paul, A.; Wilson, S.; Belham, C. M.; Roninson, C. J. M.; Scott P. H.; Gould, G. W.; Plevin, R. Stress-activated protein kinases: activation, regulation and function. Cell Signal. 9:403–410; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Pfundt, R.; Wingens, M.; Bergers, M.; Zweers, M.; Frenken, M.; Schalkwijk, J. TNF-alpha and serum induce SKALP/elafin gene expression in human keratinocytes by a p38 MAP kinase-dependent pathway. Arch. Dermatol. Res. 292:180–187; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Ponec, M.; Weerheim, A.; Kempenaar, J.; Boonstra, J. Proliferation and differentiation of human squamous carcinoma cell lines and normal keratinocytes: effects of epidermal growth, retinoids, and hydrocortisone. In Vitro Cell Dev. Biol. 24:764–770; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Prunieras, M.; Regnier, M.; Woodley, D. Methods for cultivation of keratinocytes with an air–liquid interface. J. Invest. Dermatol. 81:28s–33s; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Schlichter. L. C. Sakellaropoulos G intracellular Ca2+ signaling induced by osmotic shock in human T lymphocytes. Exp. Cell Res. 215(1):211–222; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schliess, F.; Wiese, S.; Haussinger, D. Osmotic regulation of the heat shock response in H4IIE rat hepatoma cells. FASEB J. 13:1557–1564; 1999.

    PubMed  CAS  Google Scholar 

  • Takahashi, K.; Isobe, M.; Muto, S. An increase in cytosolic calcium ion concentration precedes hypoosmotic shock-induced activation of protein kinases in tobacco suspension culture cells. FEBS Lett. 401:202–206; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Tilly, B. C.; Gaestel, M.; Engel, K.; Edixhoven, M. J.; de Jonge, H. R. Hypo-osmotic cell swelling activates the p38 MAP kinase signalling cascade. FEBS Lett. 395:133–136; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Tilly, B. C.; Gatsios, P.; Ludwig, S.; Rapp, U. R.; Haussinger, D.; Heinrich, P.C.; Graeve, L. The mitogen-activated protein (MAP) kinase p38 and its upstream activator MAP kinase kinase 6 are involved in the activation of signal transducer and activator of transcription by hyperosmolarity. J. Biol. Chem. 274:30222–30227; 1999.

    Article  Google Scholar 

  • Williams, M. L.; Brown, B. E.; Monger, D. J.; Grayson, S.; Elias, P. M. Lipid content and metabolism of human keratinocyte cultures grown at the air-medium interface. J. Cell Physiol. 136:103–110; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z.; Woodring, P. J.; Bhakta, K. S.; Tamura, K.; Wen, F.; Feramisco, J. R.; Karin, M.; Wang, J. Y.; Puri, P. L. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol. Cell Biol. 20:3951–3964; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, Y. M.; Oh, C. D.; Kim, D. Y.; Lee, Y. S.; Park, J. W.; Huh, T. L.; Kang, S. S.; Chun, J. S. Epidermal growth factor negatively regulates chondrogenesis of mesenchymal cells by modulating the protein kinase C-alpha, Erk-1, and p38 MAPK signaling pathways. J. Biol. Chem. 275:12353–12359; 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mammone.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mammone, T., Ingrassia, M. & Goyarts, E. Osmotic stress induces terminal differentiation in cultured normal human epidermal keratinocytes. In Vitro Cell.Dev.Biol.-Animal 44, 135–139 (2008). https://doi.org/10.1007/s11626-008-9087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9087-z

Keywords

Navigation