Skip to main content
Log in

Adult rat spinal cord culture on an organosilane surface in a novel serum-free medium

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

In this study, we have documented by morphological analysis, immunocytochemistry, and electrophysiology, the development of a culture system that promotes the growth and long-term survival of dissociated adult rat spinal cord neurons. This system comprises a patternable, nonbiological, cell growth-promoting organosilane substrate coated on a glass surface and an empirically derived novel serum-free medium, supplemented with specific growth factors (acidic fibroblast growth factor, heparin sulfate, neurotrophin-3, brain-derived neurotrophic factor, glial-derived neurotrophic factor, cardiotrophin-1, and vitronectin). Neurons were characterized by immunoreactivity for neurofilament 150, neuron-specific enolase, Islet-1 antibodies, electrophysiology, and the cultures were maintained for 4–6 wk. This culture system could be a useful tool for the study of adult mammalian spinal neurons in a functional in vitro system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexanian, A.; Nornes, H. Proliferation and regeneration of retrogradely labeled adult rat corticospinal neurons in culture. Exp. Neurol. 170:277–282; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, K.; Potter, A.; Piccenna, L.; Quah, A.; Davies, K.; Cheema, S. Isolation and culture of motor neurons from the newborn mouse spinal cord. Brain Res. Brain Res. Protoc. 12:132–136; 2002.

    Article  Google Scholar 

  • Anderson, M. Differences in growth of neurons from normal and regenerated teleost spinal cord in vitro. In Vitro Cell. Dev. Biol. 29A:145–152; 1993.

    PubMed  CAS  Google Scholar 

  • Bamber, N.; Li, H.; Aebischer P.; Xu, X. Fetal spinal cord tissue in miniguidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords. Neural Plast. 6:103–121; 1999.

    PubMed  CAS  Google Scholar 

  • Brewer, G. Isolation and culture of adult rat hippocampal neurons. J. Neurosci. Methods 71:143–155; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Campos, L.; Meng, Z.; Hu, G.; Chiu, D.; Ambron, R.; Martin, J. Engineering novel spinal circuits to promote recovery after spinal injury. J. Neurosci. Methods 24:2090–2101; 2004.

    CAS  Google Scholar 

  • Camu, W.; Henderson, C. Purification of embryonic rat motoneurons by panning on a monoclonal antibody to the low-affinity NGF receptor. J. Neurosci. Methods 44:59–70; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran, J.; So, P.; Barber, R.; Vincent, K.; Mazarakis, N.; Mitrophanous, K. Kingsman, S.; Maden M. Retinoic acid receptor beta2 and neurite outgrowth in the adult mouse spinal cord in vitro. J. Cell Sci. 115:3779–3786; 2002a.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran, J.; So, P.; Maden, M. Absence of retinoids can induce motoneuron disease in the adult rat and a retinoid defect is present in motoneuron disease patients. J. Cell Sci. 115:4735–4741; 2002b.

    Article  PubMed  CAS  Google Scholar 

  • Cuevas, P.; Carceller, F.; Gimenez-Gallego, G. Acidic fibroblast growth factor prevents post-axotomy neuronal death of the newborn rat facial nerve. Neurosci. Lett. 197:183–186; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Das, M.; Molnar, P.; Devaraj, H.; Poeta, M.; Hickman J. Electrophysiological and morphological characterization of rat embryonic motoneurons in a defined system. Biotechnol. Prog. 19:1756–1761; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Das, M.; Molnar, P.; Gregory, C.; Riedel, L.; Jamshidi, A.; Hickman, J. Long-term culture of embryonic rat cardiomyocytes on an organosilane surface in a serum-free medium. Biomaterials 25:5643–5647; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Eckenstein, F.; Andersson, C.; Kuzis, K.; Woodward, W. Distribution of acidic and basic fibroblast growth factors in the mature, injured and developing rat nervous system. Prog. Brain Res. 103:55–64; 1994.

    PubMed  CAS  Google Scholar 

  • Ericson, J.; Thor, S.; Edlund, T.; Jessell, T.; Yamada, T. Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1. Science 256:1555–1560; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Estevez, A.; Crow, J.; Sampson, J., et al. Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Frisen, J.; Haegerstrand, A.; Fried, K.; Piehl, F.; Cullheim S.; Risling, M. Adhesive/repulsive properties in the injured spinal cord: relation to myelin phagocytosis by invading macrophages. Exp. Neurol. 129:183–193; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Fry, E. Central nervous system regeneration: mission impossible? Clin. Exp. Pharmacol. Physiol. 28:253–258; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Geller, H.; Fawcett, J. Building a bridge: engineering spinal cord repair. Exp. Neurol. 174:125–136; 2002.

    Article  PubMed  Google Scholar 

  • Grimpe, B.; Silver, J. The extracellular matrix in axon regeneration. Prog. Brain Res. 137:333–349; 2002.

    PubMed  CAS  Google Scholar 

  • Haase, G.; Kennel, P.; Pettmann, B.; Vigne, E.; Akli, S.; Revah, F.; Schmalbruch, H.; Kahn, A. Gene therapy of murine motor neuron disease using adenoviral vectors for neurotrophic factors. Nat. Med. 3:429–436; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, M. J.; Shen, S.; Wiemelt, A.; McMorris, F.; Barres, B. Cyclic AMP elevation is sufficient to promote the survival of spinal motor neurons in vitro. J. Neurosci. 18:7361–7371; 1998.

    PubMed  CAS  Google Scholar 

  • Henderson, C.; Camu, W.; Mettling, C. et al. Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363:266–270; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, C.; Phillips, H.; Pollock, R., et al. GDNF a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266:1062–1064; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, C.; Yamamoto, Y.; Livet, J.; Arce, V.; Garces, A.; deLapeyriere, O. Role of neurotrophic factors in motoneuron development J. Physiol. Paris 92:279–281; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, R.; Sendtner, M.; Thoenen, H. Members of several gene families influence survival of rat motoneurons in vitro and in vivo. J. Neurosci. Res. 36:663–671; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Jacques, T.; Skepper, J.; Navaratnam, V. Fibroblast growth factor-1 improves the survival and regeneration of rat vagal preganglionic neurones following axon injury. Neurosci. Lett. 276:197–200; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kapfhammer, J. Axon sprouting in the spinal cord: growth promoting and growth inhibitory mechanisms. Anat. Embryol. (Berl) 196:417–426; 1997.

    Article  CAS  Google Scholar 

  • Kleinfeld D.; Kahler, K.; Hockberger, P. Controlled outgrowth of dissociated neurons on patterned substrates. J. Neurosci. 8:4098–4120; 1988.

    PubMed  CAS  Google Scholar 

  • Kuffler, D. Long-term survival and sprouting in culture by motoneurons isolated from the spinal cord of adult frogs J. Comp. Neurol. 302:729–738; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Kuzis, K.; Coffin, J.; Eckenstein, F. Time course and age dependence of motor neuron death following facial nerve crush injury: role of fibroblast growth factor. Exp. Neurol. 157:77–87; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, B.; Bordet, T.; Haase, G.; Castelnau-Ptakhine, L.; Rouhani, S.; Gilgenkrantz, H.; Kahn, A. In vivo electrotransfer of the cardiotrophin-1 gene into skeletal muscle slows down progression of motor neuron degeneration in pmn mice. Hum. Mol. Genet. 11:1615–1625; 2002.

    Article  Google Scholar 

  • Lindsay, R.; Neurotrophins and receptors. Prog. Brain Res. 103:3–14; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Liu, R.; Morassutti, D.; Whittemore, S.; Sosnowski, J.; Magnuson, D. Electrophysiological properties of mitogen-expanded adult rat spinal cord and subventricular zone neural precursor cells. Exp. Neurol. 158:143–154; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Maquet, V.; Martin, D.; Scholtes, F.; Franzen R.; Schoenen, J.; Moonen, G.; Jerme, R. Poly(D,L-lactide) foams modified by poly(ethylene oxide)-block-poly(D,L-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomaterials 22:1137–1146; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mey, J. Retinoic acid as a regulator of cytokine signaling after nerve injury. Z. Naturforsch. 56:163–176; 2001.

    CAS  Google Scholar 

  • Mrksich, M.; Whitesides, G. Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annu. Rev. Biophys. Biomol. Struct. 25:55–78; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Nacimiento, W.; Schmitt, A.; Brook, G. Nerve regeneration after spinal cord trauma. Neurobiological progress and clinical expectations. Nervenarzt 70:702–713; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Nicholls, J.; Adams, W.; Eugenin, J.; Geiser, R.; Lepre, M.; Luque, J.; Wintzer, M. Why does the central nervous system not regenerate after injury? Surv. Ophthalmol. 43:S136-S141; 1999.

    Article  PubMed  Google Scholar 

  • Pennica, D.; Arce, V.; Swanson, T. et al. Cardiotrophin-1, a cytokine present in embryonic muscle, supports long-term survival of spinal motoneurons. Neuron 17:63–74; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Price, P.; Brewer, G. Serum-free media for neural cell cultures. Adult and embryonic. In: Fedoroff, S.; Richardson, A., ed. Protocols for neural cell culture. Totowa, NJ: Humana Press; 2001:255–263.

    Chapter  Google Scholar 

  • Ravenscroft, M.; Bateman, K.; Shaffer, K., et al. Developmental neurobiology implications from fabrication and analysis of hippocampal neuronal networks on patterned silane-modified surfaces. J. Am. Chem. Soc. 120:12169–12177; 1998.

    Article  CAS  Google Scholar 

  • Sakamoto, T.; Kawazoe, Y.; Shen, J., et al. Adenoviral gene transfer of GDNF, BDNF and TGF beta 2, but not CNTF, cardiotrophin-1 or IGF1, protects injured adult motoneurons after facial nerve avulsion. J. Neurosci. Res. 72:54–64; 2003a.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, T.; Kawazoe, Y.; Uchida, Y.; Hozumi, I.; Inuzuka, T.; Watabe, K. Growth inhibitory factor prevents degeneration of injured adult rat motoneurons. Neuroreport 14:2147–2151; 2003b.

    Article  PubMed  CAS  Google Scholar 

  • Schaffner, A.; Barker, J.; Stenger, D.; Hickman, J. Investigation of the factors necessary for growth of hippocampal neurons in a defined system. J. Neurosci. Methods 62:111–119; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Schnaar, R.; Schaffner, A. Separation of cell types from embryonic chicken and rat spinal cord: characterization of motoneuron-enriched fractions. J. Neurosci. 1:204–217; 1981.

    PubMed  CAS  Google Scholar 

  • Seybold, V.; Abrahams, L. Primary cultures of neonatal rat spinal cord. Methods Mol. Med. 99:203–213; 2004.

    PubMed  Google Scholar 

  • Spargo, B.; Testoff, M.; Nielsen, T.; Stenger, D.; Hickman, J.; Rudolph, A. Spatially controlled adhesion, spreading, and differentiation of endothelial cells on self-assembled molecular monolayers. Proc. Natl. Acad. Sci. USA 91:11070–11074; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Stenger, D.; Hickman, J.; Bateman, K. et al. Microlithographic determination of axonal/dendritic polarity in cultured hippocampal neurons. J. Neurosci. Methods 82:167–173; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Stenger, D. A.; Georger, J. H.; Dulcey, C. S.; Hickman, J. J.; Rudolph, A. S.; Niel, T. B. Coplanar molecular assemblies of aminoalkylsilane and perfluorinated alkylsilane-characterization and geometric definition of mammalian-cell adhesion and growth. J. Am. Chem. Soc. 114:8435–8442; 1992.

    Article  CAS  Google Scholar 

  • Thoenen, H.; Sendtner, M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5:1046–1050; 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Hickman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, M., Bhargava, N., Gregory, C. et al. Adult rat spinal cord culture on an organosilane surface in a novel serum-free medium. In Vitro Cell.Dev.Biol.-Animal 41, 343–348 (2005). https://doi.org/10.1007/s11626-005-0006-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-005-0006-2

Key words

Navigation