Skip to main content

Effects of Neurotoxic or Pro-regenerative Agents on Motor and Sensory Neurite Outgrowth in Spinal Cord Organotypic Slices and DRG Explants in Culture

  • Protocol
  • First Online:
Experimental Neurotoxicology Methods

Part of the book series: Neuromethods ((NM,volume 172))

  • 716 Accesses

Abstract

Classically, primary sensory neuron cultures obtained from the DRG have been used as a model to evaluate neurite growth in vitro. Primary sensory neurons are easily cultured, either dissociated or from explants, from embryonic to adult ages. In contrast, culture of motoneurons is much more complex and limited to the embryonic ones or to postnatal organotypic cultures by using membrane culture inserts. Here we describe a protocol of an easy in vitro assay to culture postnatal rodent spinal cord organotypic slices and DRG explants in 3D collagen matrices that are permissive for neuritogenesis. The main aim of this in vitro assay is to have a similar setting for both types of neurons that allows the measurement and comparison of positive or adverse events on neurite growth of motor and sensory neurons. The matrix can also be modified by adding trophic or tropic factors, cells, or other agents. Immunohistochemistry of the explants and the slices is needed to specifically label myelinated fibers and fairly compare the growth of myelinated primary sensory neurons and motoneurons, as well as neuronal survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argyriou AA, Briani C, Cavaletti G et al (2013) Advanced age and liability to oxaliplatin-induced peripheral neuropathy: post hoc analysis of a prospective study. Eur J Neurol 20(5):788–794

    Article  CAS  PubMed  Google Scholar 

  2. Lehmann HC, Staff NP, Hoke A (2019) Modeling chemotherapy induced peripheral neuropathy (CIPN) in vitro: prospects and limitations. Exp Neurol 326:113140. https://doi.org/10.1016/j.expneurol

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tucker BA, Mearow KM (2008) Peripheral sensory axon growth: from receptor binding to cellular signaling. Can J Neurol Sci 35(5):551–566

    Article  PubMed  Google Scholar 

  4. Rothstein JD, Jin L, Dykes-Hoberg M, Kuncl RW (1993) Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A 90(14):6591–6595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kosuge Y, Sekikawa-Nishida K, Negi H et al (2009) Characterization of chronic glutamate-mediated motor neuron toxicity in organotypic spinal cord culture prepared from ALS model mice. Neurosci Lett 454(2):165–169

    Article  CAS  PubMed  Google Scholar 

  6. Montoya GJ, Sutachan JJ, Chan WS et al (2009) Muscle-conditioned media and cAMP promote survival and neurite outgrowth of adult spinal cord motor neurons. Exp Neurol 220:303–315

    Article  Google Scholar 

  7. Pandamooz S, Salehi MS, Zibaii MI, Safari A, Nabiuni M, Ahmadiani A, Dargahi L (2019) Modeling traumatic injury in organotypic spinal cord slice culture obtained from adult rat. Tissue Cell 56:90–97

    Article  PubMed  Google Scholar 

  8. Guzmán-Lenis MS, Navarro X, Casas C (2009) Drug screening of neuroprotective agents on an organotypic-based model of spinal cord excitotoxic damage. Restor Neurol Neurosci 27(4):335–349

    PubMed  Google Scholar 

  9. Herrando-Grabulosa M, Mulet R, Pujol A et al (2016) Novel neuroprotective multicomponent therapy for amyotrophic lateral sclerosis designed by networked systems. PLoS One 11(1):e0147626

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tucker A, Lumsden A, Guthrie S (1996) Cranial motor axons respond differently to the floor plate and sensory ganglia in collagen gel co-cultures. Eur J Neurosci 8(5):906–916

    Article  CAS  PubMed  Google Scholar 

  11. Allodi I, Guzmán-Lenis MS, Hernàndez J et al (2011) In vitro comparison of motor and sensory neuron outgrowth in a 3D collagen matrix. J Neurosci Methods 198:53–61

    Article  PubMed  Google Scholar 

  12. Allodi I, Casals-Díaz L, Santos-Nogueira E et al (2013) FGF-2 low molecular weight selectively promotes neuritogenesis of motor neurons in vitro. Mol Neurobiol 47:770–781

    Article  CAS  PubMed  Google Scholar 

  13. Gonzalez-Perez F, Alé A, Santos D et al (2016) Substratum preferences of motor and sensory neurons in postnatal and adult rats. Eur J Neurosci 43:431–442

    Article  PubMed  Google Scholar 

  14. Santos D, González-Pérez F, Giudetti G et al (2017) Preferential enhancement of sensory and motor axon regeneration by combining extracellular matrix components with neurotrophic factors. Int J Mol Sci 18(1):65. https://doi.org/10.3390/ijms18010065

    Article  CAS  Google Scholar 

  15. Auer M, Allodi I, Barham M et al (2013) C3 exoenzyme lacks effects on peripheral axon regeneration in vivo. J Peripher Nerv Syst 18:30–36. https://doi.org/10.1111/jns5.12004

    Article  CAS  PubMed  Google Scholar 

  16. Allodi I, Mecollari V, González-Pérez F et al (2014) Schwann cells transduced with a lentiviral vector encoding Fgf-2 promote motor neuron regeneration following sciatic nerve injury. Glia 62:1736–1746

    Article  PubMed  Google Scholar 

  17. Torres-Espín A, Corona-Quintanilla DL, Forés J et al (2013) Neuroprotection and axonal regeneration after lumbar ventral root avulsion by re-implantation and mesenchymal stem cells transplant combined therapy. Neurotherapeutics 10(2):354–368. https://doi.org/10.1007/s13311-013-0178-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Allodi I (2012) Changing the intrinsic growth capacity of motor and sensory neurons to promote axonal growth after injury. Thesis dissertation. https://www.tdx.cat/handle/10803/96355

  19. Rakowicz WP, Staples CS, Milbrandt J et al (2002) Glial cell line-derived neurotrophic factor promotes the survival of early postnatal spinal motor neurons in the lateral and medial motor columns in slice culture. J Neurosci 22(10):3953–3962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Udina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bolívar, S., Allodi, I., Herrando-Grabulosa, M., Udina, E. (2021). Effects of Neurotoxic or Pro-regenerative Agents on Motor and Sensory Neurite Outgrowth in Spinal Cord Organotypic Slices and DRG Explants in Culture. In: Llorens, J., Barenys, M. (eds) Experimental Neurotoxicology Methods. Neuromethods, vol 172. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1637-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1637-6_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1636-9

  • Online ISBN: 978-1-0716-1637-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics