Abstract
The Nature Futures Framework (NFF) was developed for the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) to explore scenarios that represent a diversity of positive relationships between humans and nature. Widely used in global environmental assessments, the shared socio-economic pathways (SSPs) in combination with the representative concentration pathways (RCPs) were developed for climate change assessments. However, the relationship at a global level between the SSP–RCP scenario outcomes and the framing of the NFF around three value perspectives—Nature for Nature, Nature for Society, and Nature as Culture—has not been established. Here, we demonstrate a method to map onto the NFF value perspectives results from alternative SSP scenarios, each paired with an RCP consistent with the SSP storyline. For each of the NFF value perspectives, multiple elements were identified, each represented by one or more nature-focused indicators. Values for these indicators, for the different SSP scenario outcomes, were derived from an existing application of a global land system model, LandSyMM. A score for each indicator is estimated by comparing the indicator values against a normative target range. We find that only SSP1 provides greater benefits for Nature as Culture and Nature for Society relative to a 2010 baseline. Overall, the SSP scenarios provide fewer benefits for Nature for Nature, consistent with a bias towards the provision of material over non-material ecosystem services. The results demonstrate that the SSP–RCP scenario framing captures some, but not all, of the dimensions of nature and that alternative scenario framings, such as the NFF, are needed to study a broader range of biodiversity and ecosystem related questions as well as exploring positive futures.
Similar content being viewed by others
Avoid common mistakes on your manuscript.
Introduction
Scenario analysis is a powerful tool to explore the consequences of human (in)action within different socio-economic assumptions in the context of an uncertain future. The climate change community has used this successfully for decades, and developed and refined a set of exploratory storylines that describe plausible but diverse futures (Table 1) (Ebi et al. 2014; O’Neill et al. 2014; van Vuuren et al. 2014). The currently most widely used are representative concentration pathways (RCPs) describing alternative greenhouse gas concentration trajectories, coupled with the shared socio-economic pathways (SSPs) describing alternative socio-economic trajectories (O’Neill et al. 2020). Global integrated assessment models (IAMs) have then been used to quantify the implications of these storylines for different sectors of the economy. IAM outputs (such as greenhouse gas emissions or land use change) have been applied in, e.g. earth system models to compute global, spatially resolved impacts on the climate system or in ecosystem models to explore global, spatially resolved implications for natural and managed ecosystems (Frieler et al. 2015; O’Neill et al. 2016; Popp et al. 2017; Riahi et al. 2017; Rosenzweig et al. 2014).
This well-established and widely used approach to investigate the magnitudes and impacts of global climate change has in recent years faced increasing criticism. In addition to climate change, a broader set of sustainability challenges, such as biodiversity loss, have come into focus, which are difficult to address methodologically in a climate change framing. Criticisms of IAM scenarios include that the magnitude and speed of uptake of land-based mitigation scenarios is unprecedented in human history, and the related consequences such as loss of habitats, and biodiversity, negative impact on food production and security, and harms to freshwater ecosystems (Bonsch et al. 2016; Henry et al. 2018; Kreidenweis et al. 2016; Rounsevell et al. 2014; Searchinger et al. 2017; Turner et al. 2018). Additionally, the simulated carbon uptake potential in forests or via bioenergy crops in IAMs cannot be reproduced with dedicated carbon cycle models (Harper et al. 2018; Krause et al. 2020).
To some degree, these challenges arise from the storylines and scenarios used in the climate change community, with their singular focus on greenhouse gas emissions and other climate change forcers, and ways towards reducing these. The strong economic focus of IAMs also makes it difficult to integrate the multiple societal perceptions and values of ecosystem services, beyond those where markets exist (Lamperti et al. 2021; Ramanathan et al. 2022; Rising et al. 2022; Uden et al. 2021). Over recent years, the emerging consensus is that addressing multiple development objectives at once, and the need to explore both synergies and possibly unavoidable trade-offs between achieving these requires a new set of storylines, which are normative (‘goal-seeking’) in that they describe desired futures and have non-monetary goals as their outcomes (Arneth et al. 2019; Otero et al. 2020; Rosa et al. 2017). Closely related to these necessary developments are models that can simulate the pathways (sensu “a description of the time-dependent actions required to move from today’s world to a set of future visions” (Arneth et al. 2019)).
Scientists contributing to the Intergovernmental Science-Policy Platform on Ecosystem Services and Biodiversity (IPBES) have responded to these needs by developing the Nature Futures Framework (NFF) (Kim et al. 2023; Pereira et al. 2020). Unlike the SSP–RCP climate change scenarios, the storylines and visions underpinning the NFF were co-designed iteratively with a broad range of non-academic stakeholders and experts, starting with a joint workshop (Lundquist et al. 2017), and distilled into the current NFF that seeks to consider a plurality of perspectives along the three axes “Nature for Nature”, i.e. the intrinsic values of nature; “Nature for Society”, i.e. the instrumental values of nature; and “Nature as Culture”, i.e. the relational values (Table 1) (Kim et al. 2023; Pereira et al. 2020). Kim et al. (2023) provide a first review of the possibilities and challenges of translating NFF storylines into quantitative modelling outcomes, based on existing modelling tools, with Durán et al. (2023) describing alternative, indicative narratives across the NFF value perspectives.
There are both fundamental differences and some similarities, between the SSP and NFF scenario framings (Table 1). This means that although comparing scenarios across these two different paradigms is challenging, there is value in doing this to evaluate the extent and consequences of these difference and similarities. Given the different ‘issue’ focus of both framings (i.e. climate change and biodiversity), it is also useful to compare the approaches to draw more generic conclusions about outcomes that are relevant to both issues. Mapping one framework onto another, i.e. addressing both the climate change and biodiversity crises, is important as these have previously been treated independently. The interconnections between biodiversity and climate change are important as climate change exacerbates risks to biodiversity, while ecosystems and their biodiversity play a key role in greenhouse gas fluxes and climate adaptation (Pörtner et al. 2021). Furthermore, the SSPs are older than the NFF and so have been used extensively within the literature. While the NFF is still developing through further testing and refinement in research studies and with stakeholder communities, comparison with the more established SSP framework is useful in providing insights to support the direction for these developments. However, to date, a comparison between SSP scenario outcomes and the NFF value perspectives has not been conducted.
We explore in this study how outputs simulated under different SSP scenarios, with an RCP scenario consistent with the storyline, from a state-of-the-art model of the land system (LandSyMM; Alexander et al. 2023; Henry et al. 2022; Rabin et al. 2020)) could be interpreted with respect to the NFF value perspectives. The mapping of one framing onto the other also seeks to explore to what extent the SSPs cover the scenario space that is represented by the NFF, and to what extent they do not. The analysis is based on existing, exploratory scenarios and is intended to support further applications of the NFF and contribute to multiple ongoing development efforts in the IPBES community (Kim et al. 2023; Pereira et al. 2020). The work also responds to an invitation from IPBES to discuss opportunities for the NFF (IPBES 2022) and a call for studies that operationalise the NFF (Lundquist et al. 2021).
Materials and methods
Five steps (Fig. 1) were undertaken to produce an aggregate global score for each NFF value perspective under the SSP scenarios at 2100, as well as for a current baseline. The “Middle of the road” SSP2 scenario was not included, since data were not available for this scenario from existing, published studies. As described below, the steps progressed from identifying elements of the NFF value perspective with one or more proxy indicator, to scoring these indicators against target values and finally to aggregating the individual scores for an NFF value perspective.
Identifying elements of value perspectives and proxy indicators
A range of proxy indicators were identified relating to a range of elements for each NFF value perspective. These proxy indicators were selected as a pragmatic combination of values where data were available for future scenarios and to provide as broad a coverage as possible of the aspects of each value perspective that were consistent with the existing NFF framework (Kim et al. 2023; Pereira et al. 2020). Five different elements were selected for Nature for Nature and Nature as Culture, and four elements for Nature for Society (Table 2). Each of these elements had between 1 and 7 proxy indicators, with the total number of indicators being 11 for Nature for Nature, 12 for Nature for Society, and 17 for Nature as Culture.
Defining indicator target value range
Target values were ascribed to each proxy indicator, to represent a normative, desirable future (Table 2). Existing publications and policy targets were used to define these targets where possible, e.g. planetary boundaries (Steffen et al. 2015), EAT-Lancet diet (Willett et al. 2019), and international agreements such as the Bonn Challenge and New York Declaration on Forests (Dave et al. 2019). An assumption of no further change was made in cases where no clear target could be identified, for example, in the case of cultural landscapes targets included no further loss of extensive pasture, unmanaged forest, and other natural areas. Additionally, an indicator level with poor or ‘bad’ outcomes was also defined using the same approach. This allowed a scale of values to be described from the desired future outcome to a lower threshold. For example, in the Forest Area (N1.1, Table 2), the target indicator range was determined to be from 4222 Mha corresponding to the Bonn Challenge, to a lower limit of 3377 Mha. A future area at or above 4222 Mha would score the maximum 1 (‘good’) for this indicator and a forest area at or below 3377 Mha would score a 0 (‘bad’) (see Sect. 2.4 for further details of scoring the indicators using the target ranges).
Assessing indicator outcomes for each SSP
Existing simulations for the SSP scenarios using LandSyMM (Alexander et al. 2018; Rabin et al. 2020) (https://landsymm.earth/) were used to assess the outcomes for each of the proxy indicators at 2100. SSPs were paired with RCPs consistent with the SSP storyline: SSP1 with RCP4.5, SSP3 and 4 with RCP6.0, and SSP5 with RCP8.5. While multiple RCPs are potentially consistent with an SSP (and vice versa), some combinations are considered more likely (Engström et al. 2016). Each SSP scenario was paired with the RCP considered to be most likely according to the descriptions within the scenario narrative. LandSyMM is a state-of-the-art global land use model that couples a dynamic global vegetation model (LPJ-GUESS) (Smith et al. 2014) with a land system and international trade model (PLUM) (Alexander et al. 2018; Rabin et al. 2020). LandSyMM combines spatially explicit, biophysically derived yield responses with socio-economic scenario data to project future land use and management inputs. LandSyMM improves upon existing global land use models by having a more detailed spatial representation of crop yields and the responses of crops to intensity of production (Maire et al. 2022). Additionally, food demand is price elastic, responding both to country level incomes and the endogenously modelled prices, using a modified, implicit, directly additive demand system (MAIDADS) (Gouel and Guimbard 2018). LandSyMM runs on a 0.5° spatial grid and uses a dynamic global vegetation model, LPJ-GUESS (Smith et al. 2014), to estimate crop yields at a given location in response to climate change, irrigation, and fertiliser application rates. Agricultural intensity is represented by three factors: nitrogen fertiliser application rate, irrigation water use, and a management intensity index (representing, e.g. pesticide use, phosphorous and potassium fertiliser, controlling of soil pH and increased use of machinery or labour). The outputs of land use and management from PLUM for scenarios are fed into a final LPJ-GUESS run to produce projections of multiple, ecosystem service indicators, such as water runoff and N loss.
Many of the values used for the proxy indicators are produced directly through the LandSyMM simulations and have been previously published. This includes the area of different land covers, e.g. unmanaged forest, cropland areas, the food production and food provisioning values, N losses, and water runoff (Alexander et al. 2018; Rabin et al. 2020). Other indicator values were derived from these published simulations. The biodiversity and species richness indicators were calculated using the approach of Henry et al. (2019) that overlays projected land use change with maps of biodiversity species richness, e.g. conservation international (CI) biodiversity hotspots (Arneth et al. 2023; Myers et al. 2000). The proxy indicator for access to recreational area considers the proportion of locations (on a 0.5-degree grid) where there is sufficient natural land cover for there to be 1 ha per thousand residents in that area. That limit was chosen, as the Natural England’s Accessible Natural Greenspace Standard (ANGSt) recommends that everyone should have an accessible natural greenspace including a minimum of one hectare of statutory local nature reserves per thousand population (Natural England 2010). C sequestration for each period was calculated as the change in total terrestrial C from the beginning to the end of the period; this was then divided by the total anthropogenic CO2–C emissions from fossil fuels and other industrial sources (IPCC 2013). The proportion of the global population in different body mass index (BMI) categories was calculated from dietary intake using the method of Henry et al. (2022).
Calculating indicator scores against targeted values
The values for each indicator and scenario were then translated to a linear indexed score between 0 and 1, using the target (‘good’) and lower (‘bad’) levels, where ‘good’ and ‘bad’ refer to the outcomes for each NFF value perspective. A value of 1 implies achieving or exceeding the targeted level, and conversely a value of 0 means at or worse than the ‘bad’ level (Table 2). Most of the scoring ranges have high values being ‘better’, e.g. forest area (N1.1), but others have lower values than the target, e.g. irrigation use as a fraction of runoff (N3.1). The indicator scores were limited to a range of 0–1, so that overshooting the target or undershooting the lower bound was not represented.
To illustrate the approach, the first element of Nature for Nature is ‘Terrestrial habitat availability’ (N1) and the first proxy indicator is Forest area (N1.1). The baseline forest area is 3872 Mha and the target range is from a lower limit of 3377 Mha to 4222 Mha (Sect. 2.1). The LandSyMM simulation for SSP1 at 2100 has a 116 Mha (3%) drop in forest area, to 3756 Mha (Rabin et al. 2020). This is 0.59 on the linear scale between 3377 and 4222 Mha; therefore, this is taken as the score for that indicator and SSP.
Aggregating indicator scores
The individual indicators were aggregated with equal weights to provide a mean score for each element of the NFF value perspective. These elements were in turn averaged in the same manner to derive an overall score for the NFF value perspective under each SSP. The supplementary material provides a spreadsheet showing these calculations.
Results
Proxy indicator results
The proxy indicator results showed a wide range of outcomes as well as variability across the SSPs (Fig. 2). The selected normative scale ranges, from a target value to the lower bound ‘bad’ level, were exceeded in many cases, predominately at the negative end of the range. For example, the area of land with change in biome (N1.4) and N loss to water (N2.1) were worse than the lower bound for all SSPs. Conversely, some indicators were found to have a more positive outcome. The food provisioning indicators (S1.1-7) generally had high scores across all SSPs, with SSP4 achieving the target score across all 7 food groups.
Element of value perspective results
The score for the elements of each NFF value perspective (Table 3) also showed wide variations. Pollution impacts (N2) scored negatively across the SSPs and baseline, with only SSP1 receiving a score above 0, of 0.08. Terrestrial habitat availability (N1) was assessed as moderately high in the baseline (0.68), but dramatically decreased in all future scenarios. The lowest overall scores from Nature for Society and Nature as Culture related to water regulation (S4) and Health and pollution (C5), respectively. Both declined substantially from an intermediate baseline score. For each NFF value perspective, there was one element that had scored consistently highly. Impacts on freshwater habitats (N3) showed improvements in all SSPs from the baseline for Nature for Nature. Food provisioning (S1) in Nature for Society, and aesthetic quality (C2) in Nature as Culture both scored highly for all scenarios. Food provisioning scores reflected that sufficient food was produced to fulfil the EAT-Lancet diet. However, healthier products such as fruit, vegetables, and pulses were undersupplied (Fig. 2, Table 3). The health outcomes from the relative oversupply of food compared to nutritional requirements were included in Nature as Culture and showed the substantial and growing problem of the global population becoming overweight and obese.
Overall NFF value perspective results
The desired goal is to score a maximum 1 for each of the NFF value perspective totals (Table 3). This would be represented as a triangle filling the space of the radar diagram shown in Fig. 3; conversely, the worst possible outcome would be a dot in the centre indicating achievement of none of the targets for all three values perspectives. The baseline scores were already failing to meet these objectives, indicating that we are operating outside of planetary boundaries with negative consequences for environmental and societal objectives. The SSPs were also not able to achieve these normative goals. Only in SSP1 (“sustainability—taking the green road”) do any of the NFF value perspective scores increase, with Nature for Society and Nature as Culture both increasing relative to the baseline, although with a decline in the score for Nature for Nature. SSP3 (“regional rivalry—a rocky road “) saw the most dramatic decline in all the NFF value perspectives. SSP4 and SSP5 both had substantial declines in all value perspectives’ scores.
Discussion
The study seeks to quantify from the NFF value perspectives the outcomes under different SSP scenarios. The focus is on the three values perspectives (the corners of the NFF triangle, Table 1) rather than other locations in the triangular space, as the approach uses the NFF perspectives as lenses to evaluate the outcomes for each SSP scenario. The NFF is not being used here to create the scenarios, and therefore intermediate points on the NFF space would only be numerical averages of those considered. This contrasts with potential studies where the NFF is used in a ‘goal-seeking’ scenario framework. In such cases, it would be critical to consider other points in that spaces, as important trade-offs and co-benefits could occur that need to be captured and explored.
SSP1 is consistently the best of the SSPs in terms of coming closest to filling the NFF triangle, indicating that each of the value perspectives would have reached their maximum level (i.e. the corners of the triangle, Fig. 3a). SSP3 is consistently the worst scenario, followed by SSP4 and SSP5, which have quite similar outcomes falling between SSP3 and SSP1. All SSPs performed worst for Nature for Nature and all the SSPs are worse than the baseline except for Nature as Culture and Nature for Society in the SSP1 scenario, and in these cases SSP1 is only slightly better than the baseline. Some bias towards the provision of material over non-material ecosystem services was evident with higher scores for Nature for Society than for Nature for Nature, including food provisioning indicators (S1.1–7) having high scores across all SSPs.
The poor performance of SSP3 relative to the baseline likely reflects limitations arising from the largely dysfunctional socio-economic development trajectory. However, since even SSP1 (an environmentally friendly and equitable scenario) performs worse than the baseline in Nature of Nature, this implies another limitation relative to the baseline. This limitation could derive from the adverse effects of climate change, which occurs across all SSP–RCP combinations and for which the consequences appear mostly to be negative, as might be expected. Indeed, SSP1 was associated with lower levels of climate change (RCP4.5), which could partly explain why it performs better than the other SSPs (e.g. SSP5 with RCP8.5), in addition to its relatively benign (i.e. low environmental impact) socio-economic conditions. However, SSP3 is also combined with RCP4.5, which suggests that whilst climate change is a contributing factor, it is not as important as the socio-economic scenario assumptions. Increases in bioenergy demand and the associated land use are a further pressure in all SSPs that contribute to worse outcomes relative to the baseline (Popp et al. 2017).
Actions to mitigate climate change would still have significant benefits for nature, especially in combination with actions to limit the negative impacts of other human-mediated drivers. These results also suggest that the SSPs have limitations when used for nature-based studies, since with a strong climate change focus, they lack narratives that are relevant to addressing biodiversity issues (Pereira et al. 2020). The results also suggest legacy effects, meaning that we are already committed to nature losses, and the SSPs simply reflect these legacy trends, since they are not goal-seeking.
Subjective judgement and values in this study
As elements in the assessment are necessarily subjective there is no single objectively correct NFF value perspective scores for an SSP along each of the 3 NFF dimensions. However, the relative positions of the SSPs for each NFF, as well as through time and therefore in comparison to the baseline, are likely to be more robust. The method presented here required the specification of normative targets to scale each indicator of an NFF value perspective. In setting these levels and choosing the indicators, we have attempted to be as evidence based as possible using published literature sources, but nonetheless the work contains elements of value judgements. For example, to represent the aesthetic quality of agricultural landscapes (C2) is derived in part from cropland area (C2.1), which to many people in rural communities are an important reflection of their sense of place and appreciation of managed rural environments. Whilst such sentiments may not be shared by everyone, we have attempted to include a diversity of normative values in the often challenging representing the subjective concept of aesthetic quality. Soliciting a broad range of perspectives through stakeholder engagement would represent a better way of determining alternative values (Blair et al. 2023; Kok et al. 2019). However, values are highly context dependent, and application of the method to different locations or regions (below the global level) would likely lead to very different values, and thus diverse outcomes for the mapping of the SSPs–RCPs onto the NFF.
Additionally, we have made methodological choices, about how to aggregate the indicators. Here, we chose to apply equal weighting of elements within the NFF value perspective scores as well as for indicators within each element. This was an explicit choice and avoids the need to select a range of weighting parameters. Applying weights (other than equal weights) has the potential to result in quite different outcomes. We could have applied a non-equal weighting to compare with the equal weighting approach, but the selection of such weights is subjective and judgemental. Assigning weights to indicators based on their quantifiable or perceived importance is extremely difficult in practice and would almost certainly require the application of values based on personal choices about what is, or is not, important for nature. This then raises the question of whose values and how should these values be defined, which is a common challenge in normative scenario approaches such as the NFF.
Values implicit in SSPs
Taking this a step further, we could also surmise about the values embedded within the SSP storylines themselves. The SSP storylines reflect contrasting, and quite divergent, worldviews, so should a normative vision for nature be specified differently for these different worldviews? For example, should SSP1 give more weight to Nature for Nature and Nature as Culture, whereas SSP5 with a more materialistic worldview should give more weight to Nature for Society? In this study, the normative targets were determined independently from the SSPs; however, weighting and scoring the NFF value perspectives differently for each SSP would give different outcomes.
Values not included in the NFF
Also pertinent to a discussion of values is that the NFF only considers values perspectives related to nature and does not account for other individual and societal values. This could include, for example, social justice and equity, economic and wealth development, or a focus on technological solutions to environmental problems (Blair et al. 2023). In principle, further such dimensions could form part of the NFF, extending it from a triangle with three dimensions reflecting three nature value perspectives to a polygon with multiple dimensions. Such an approach might well avoid the criticism of the NFF that it is too nature focused, which, as we discussed previously, mirrors criticism levelled at the SSPs for being too climate change focused.
Limitations and potential future work
In addition to questions around values, it is important to reflect on the limits of models and their indicators to adequately reflect the complexities of the natural world. The approach presented here was based on a limited number of modelled indicators that will only ever cover a part of the system of study. Selection of proxy indicators is subjective and usually constrained by the availability of data from model simulations. Therefore, future work to comprehensively capture themes and indicators from published NFF descriptions and narratives (e.g. Durán et al. 2023; Kim et al. 2023) would potentially require model developments. Indicators for Nature as Culture are particularly challenging at a global scale, and further contributions of anthropologists and other social scientists to assist with defining suitable indicators would be beneficial. Additional further work could also focus on the implications for inequality both within and between countries and regions, including using the spatial representation of LandSyMM. Moreover, it would be beneficial to include a fuller representation of the uncertainties associated with models and their parameters that are used to quantify alternative scenarios, including uncertainty between the association with SSP and RCP (Brown and Rounsevell 2021; Rounsevell et al. 2021).
Conclusions
This study demonstrates that the NFF can be used effectively at a global level to assess outcomes from other scenario frameworks against a broad range of nature-related perspectives. Further work is required to model desirable futures for nature and people based on such a pluralism of values, i.e. to have global ‘goal-seeking’ modelling using the NFF. In such work, it would be critical to consider outcomes from objectives across the triangular NFF space, to explore the trade-off and synergies arising between these objective values and the consequences for other perspectives. There is also a need to further develop modelling methods to better represent the normative framing of the NFF. For example, it is unclear whether current models adequately represent the narrative assumptions describing very different future worlds, especially if models are calibrated on past and present data. Models also need to be adapted to account for different scenario worlds, which implies a change in the model structure itself, rather than simply modifying model parameters to represent different scenarios, as has been proposed for more behaviour-based modelling approaches (Brown and Rounsevell 2021; Rounsevell et al. 2021).
References
Alexander P, Rabin S, Anthoni P, Henry R, Pugh TAM, Rounsevell MDA, Arneth A (2018) Adaptation of global land use and management intensity to changes in climate and atmospheric carbon dioxide. Glob Change Biol 24:2791–2809. https://doi.org/10.1111/gcb.14110
Alexander P, Arneth A, Henry R, Maire J, Rabin S, Rounsevell MDA (2023) High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nat Food 4:84–95. https://doi.org/10.1038/s43016-022-00659-9
Arneth A, Denton F, Agus F, Elbehri A, Erb K, Elasha B, Rahimi M, Rounsevell M, Spence A, Valentini R (2019) Chapter 1: Framing and Context, Special Report Climate Change and Land. IPCC
Arneth A, Leadley P, Claudet J, Coll M, Rondinini C, Rounsevell MDA, Alexander P, Fuchs R (2023) Making protected areas effective for biodiversity, climate and food. Glob Change Biol. https://doi.org/10.1111/gcb.16664
Blair KJ, Moran D, Alexander P (2023) Worldviews, values and perspectives towards the future of the livestock sector. Agric Hum Values. https://doi.org/10.1007/s10460-023-10469-9
Bonsch M, Humpenöder F, Popp A, Bodirsky B, Dietrich JP, Rolinski S, Biewald A, Lotze-Campen H, Weindl I, Gerten D, Stevanovic M (2016) Trade-offs between land and water requirements for large-scale bioenergy production. GCB Bioenergy 8:11–24. https://doi.org/10.1111/gcbb.12226
Brown C, Rounsevell M (2021) How can social–ecological system models simulate the emergence of social–ecological crises? People Nat 3:88–103. https://doi.org/10.1002/pan3.10167
Dave R, Saint-Laurent C, Murray L, Antunes Daldegan G, Brouwer R, De Mattos Scaramuzza CA, Raes L, Simonit S, Catapan M, García Contreras G, Ndoli A, Karangwa C, Perera N, Hingorani S, Pearson T (2019) Second Bonn Challenge progress report: application of the Barometer in 2018. IUCN Int Union Conserv Nat. https://doi.org/10.2305/IUCN.CH.2019.06.en
De Vries W, Kros J, Kroeze C, Seitzinger SP (2013) Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr Opin Environ Sustain 5:392–402. https://doi.org/10.1016/j.cosust.2013.07.004
Durán AP, Kuiper JJ, Aguiar APD, Cheung WWL, Diaw MC, Halouani G, Hashimoto S, Gasalla MA, Peterson GD, Schoolenberg MA, Abbasov R, Acosta LA, Armenteras D, Davila F, Denboba MA, Harrison PA, Harhash KA, Karlsson-Vinkhuyzen S, Kim H, Lundquist CJ, Miller BW, Okayasu S, Pichs-Madruga R, Sathyapalan J, Saysel AK, Yu D, Pereira LM (2023) Bringing the Nature Futures Framework to life: creating a set of illustrative narratives of nature futures. Sustain Sci. https://doi.org/10.1007/s11625-023-01316-1
Ebi KL, Hallegatte S, Kram T, Arnell NW, Carter TR, Edmonds J, Kriegler E, Mathur R, O’Neill BC, Riahi K, Winkler H, Van Vuuren DP, Zwickel T (2014) A new scenario framework for climate change research: background, process, and future directions. Clim Change 122:363–372. https://doi.org/10.1007/s10584-013-0912-3
Engström K, Olin S, Rounsevell MDAA, Brogaard S, van Vuuren DP, Alexander P, Murray-Rust D, Arneth A (2016) Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework. Earth Syst Dyn 7:893–915. https://doi.org/10.5194/esd-2016-7
Frieler K, Levermann A, Elliott J, Heinke J, Arneth A, Bierkens MFP, Ciais P, Clark DB, Deryng D, Döll P, Falloon P, Fekete B, Folberth C, Friend AD, Gellhorn C, Gosling SN, Haddeland I, Khabarov N, Lomas M, Masaki Y, Nishina K, Neumann K, Oki T, Pavlick R, Ruane AC, Schmid E, Schmitz C, Stacke T, Stehfest E, Tang Q, Wisser D, Huber V, Piontek F, Warszawski L, Schewe J, Lotze-Campen H, Schellnhuber HJ (2015) A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties. Earth Syst Dyn 6:447–460. https://doi.org/10.5194/esd-6-447-2015
Gouel C, Guimbard H (2018) Nutrition Transition and the Structure of Global Food Demand. Am J Agric Econ 0:1–21. https://doi.org/10.1093/ajae/aay030
Harper AB, Wiltshire AJ, Cox PM, Friedlingstein P, Jones CD, Mercado LM, Sitch S, Williams K, Duran-Rojas C (2018) Vegetation distribution and terrestrial carbon cycle in a carbon cycle configuration of JULES4.6 with new plant functional types. Geosci Model Dev 11:2857–2873. https://doi.org/10.5194/gmd-11-2857-2018
Henry RC, Engström K, Olin S, Alexander P, Arneth A, Rounsevell MDA (2018) Food supply and bioenergy production within the global cropland planetary boundary. PLoS ONE 13:e0194695. https://doi.org/10.1371/journal.pone.0194695
Henry RC, Alexander P, Rabin S, Anthoni P, Rounsevell MDA, Arneth A (2019) The role of global dietary transitions for safeguarding biodiversity. Glob Environ Change 58:101956. https://doi.org/10.1016/j.gloenvcha.2019.101956
Henry RC, Arneth A, Jung M, Rabin SS, Rounsevell MD, Warren F, Alexander P (2022) Global and regional health and food security under strict conservation scenarios. Nat Sustain. https://doi.org/10.1038/s41893-021-00844-x
IPBES (2022) Report of the Plenary of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on the work of its ninth session
IPCC (2013) Annex II: Climate System Scenario Tables. In: Prather M, Flato G, Friedlingstein P, Jones C, Lamarque J-F, Liao H, Rasch P (eds) Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. https://doi.org/10.1017/cbo9781107415324.030
Kim H, Peterson GD, Cheung WWL, Ferrier S, Alkemade R, Arneth A, Kuiper JJ, Okayasu S, Pereira L, Acosta LA, Chaplin-Kramer R, Den Belder E, Eddy TD, Johnson JA, Karlsson-Vinkhuyzen S, Kok MTJ, Leadley P, Leclère D, Lundquist CJ, Rondinini C, Scholes RJ, Schoolenberg MA, Shin Y-J, Stehfest E, Stephenson F, Visconti P, Van Vuuren D, Wabnitz CCC, José Alava J, Cuadros-Casanova I, Davies KK, Gasalla MA, Halouani G, Harfoot M, Hashimoto S, Hickler T, Hirsch T, Kolomytsev G, Miller BW, Ohashi H, Gabriela Palomo M, Popp A, Paco Remme R, Saito O, Rashid Sumalia U, Willcock S, Pereira HM (2023) Towards a better future for biodiversity and people: modelling Nature Futures. Glob Environ Change 82:102681. https://doi.org/10.1016/j.gloenvcha.2023.102681
Kok K, Pedde S, Gramberger M, Harrison PA, Holman IP (2019) New European socio-economic scenarios for climate change research: operationalising concepts to extend the shared socio-economic pathways. Reg Environ Change 19:643–654. https://doi.org/10.1007/s10113-018-1400-0
Krause A, Knoke T, Rammig A (2020) A regional assessment of land-based carbon mitigation potentials: bioenergy, BECCS, reforestation, and forest management. GCB Bioenergy 12:346–360. https://doi.org/10.1111/gcbb.12675
Kreidenweis U, Humpenöder F, Stevanović M, Bodirsky BL, Kriegler E, Lotze-Campen H, Popp A (2016) Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects. Environ Res Lett 11:085001. https://doi.org/10.1088/1748-9326/11/8/085001
Lamperti F, Bosetti V, Roventini A, Tavoni M, Treibich T (2021) Three green financial policies to address climate risks. J Financ Stab 54:100875. https://doi.org/10.1016/j.jfs.2021.100875
Lobstein T, Brinsden H (2020) Obesity: missing the 2025 global targets. World Obesity
Lundquist C, Pereira HM, Alkemade R, den Belder E, Carvalho Ribeiro S, Davies KK (2017) Visions for nature and nature’s contributions to people for the 21st century [WWW Document]. https://niwa.co.nz/sites/niwa.co.nz/files/IPBES-Nature-Futures-report_2017_ExecSum.pdf. Accessed 13 Jun 2023
Lundquist C, Hashimoto S, Denboba MA, Peterson G, Pereira L, Armenteras D (2021) Operationalizing the Nature Futures Framework to catalyze the development of nature-future scenarios. Sustain Sci 16:1773–1775. https://doi.org/10.1007/s11625-021-01014-w
Maire J, Alexander P, Anthoni P, Huntingford C, Pugh TAM, Rabin S, Rounsevell M, Arneth A (2022) A new modelling approach to adaptation-mitigation in the land system. Springer International Publishing, New York. https://doi.org/10.1007/978-3-030-86211-4
Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. https://doi.org/10.1038/35002501
Natural England (2010) Nature Nearby: Accessible Natural Greenspace
O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, van Vuuren DP (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Change 122:387–400. https://doi.org/10.1007/s10584-013-0905-2
O’Neill BC, Tebaldi C, Van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J-F, Lowe J, Meehl GA, Moss R, Riahi K, Sanderson BM (2016) The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
O’Neill BC, Carter TR, Ebi K, Harrison PA, Kemp-Benedict E, Kok K, Kriegler E, Preston BL, Riahi K, Sillmann J, Van Ruijven BJ, Van Vuuren D, Carlisle D, Conde C, Fuglestvedt J, Green C, Hasegawa T, Leininger J, Monteith S, Pichs-Madruga R (2020) Achievements and needs for the climate change scenario framework. Nat Clim Change 10:1074–1084. https://doi.org/10.1038/s41558-020-00952-0
Otero I, Farrell KN, Pueyo S, Kallis G, Kehoe L, Haberl H, Plutzar C, Hobson P, García-Márquez J, Rodríguez-Labajos B, Martin J, Erb K, Schindler S, Nielsen J, Skorin T, Settele J, Essl F, Gómez-Baggethun E, Brotons L, Rabitsch W, Schneider F, Peer G (2020) Biodiversity policy beyond economic growth. Conserv Lett. https://doi.org/10.1111/conl.12713
Pereira LM, Davies KK, den Belder E, Ferrier S, Karlsson-Vinkhuyzen S, Kim HJ, Kuiper JJ, Okayasu S, Palomo MG, Pereira HM, Peterson G, Sathyapalan J, Schoolenberg M, Alkemade R, Carvalho Ribeiro S, Greenaway A, Hauck J, King N, Lazarova T, Ravera F, Chettri N, Cheung WWL, Hendriks RJJ, Kolomytsev G, Leadley P, Metzger JP, Ninan KN, Pichs R, Popp A, Rondinini C, Rosa I, van Vuuren D, Lundquist CJ (2020) Developing multiscale and integrative nature–people scenarios using the Nature Futures Framework. People Nat 2:1172–1195. https://doi.org/10.1002/pan3.10146
Popp A, Calvin K, Fujimori S, Havlik P, Humpenöder F, Stehfest E, Bodirsky BL, Dietrich JP, Doelmann JC, Gusti M, Hasegawa T, Kyle P, Obersteiner M, Tabeau A, Takahashi K, Valin H, Waldhoff S, Weindl I, Wise M, Kriegler E, Lotze-Campen H, Fricko O, Riahi K, van Vuuren DP (2017) Land-use futures in the shared socio-economic pathways. Glob Environ Change 42:331–345. https://doi.org/10.1016/j.gloenvcha.2016.10.002
Pörtner H-O, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WL, Diamond S, Donatti C, Duarte C, Eisenhauer N, Foden W, Gasalla MA, Handa C, Hickler T, Hoegh-Guldberg O, Ichii K, Jacob U, Insarov G, Kiessling W, Leadley P, Leemans R, Levin L, Lim M, Maharaj S, Managi S, Marquet PA, McElwee P, Midgley G, Oberdorff T, Obura D, Osman Elasha B, Pandit R, Pascual U, Pires APF, Popp A, Reyes-García V, Sankaran M, Settele J, Shin Y-J, Sintayehu DW, Smith P, Steiner N, Strassburg B, Sukumar R, Trisos C, Val AL, Wu J, Aldrian E, Parmesan C, Pichs-Madruga R, Roberts DC, Rogers AD, Díaz S, Fischer M, Hashimoto S, Lavorel S, Wu N, Ngo H (2021) Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change. Zenodo. https://doi.org/10.5281/ZENODO.4659158
Rabin SS, Alexander P, Henry R, Anthoni P, Pugh TAM, Rounsevell M, Arneth A (2020) Impacts of future agricultural change on ecosystem service indicators. Earth Syst Dyn 11:357–376. https://doi.org/10.5194/esd-2019-44
Ramanathan V, Xu Y, Versaci A (2022) Modelling human–natural systems interactions with implications for twenty-first-century warming. Nat Sustain 5:263–271. https://doi.org/10.1038/s41893-021-00826-z
Riahi K, Vuuren DPV, Kriegler E, Edmonds J, Neill BCO, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Crespo J, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, Hasegawa T, Havlik P, Humpenöder F, Aleluia L, Silva D, Smith S, Stehfest E, Bosetti V, Eom J, Gernaat D, Masui T, Rogelj J, Stre J, Drouet L, Krey V, Luderer G, Harmsen M, Takahashi K, Baumstark L, Doelman JC, Kainuma M, Klimont Z, Marangoni G, Lotze-campen H, Obersteiner M, Tabeau A, Tavoni M (2017) The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009
Rising JA, Taylor C, Ives MC, Ward RET (2022) Challenges and innovations in the economic evaluation of the risks of climate change. Ecol Econ 197:107437. https://doi.org/10.1016/j.ecolecon.2022.107437
Rosa IMD, Pereira HM, Ferrier S, Alkemade R, Acosta LA, Akcakaya HR, Den Belder E, Fazel AM, Fujimori S, Harfoot M, Harhash KA, Harrison PA, Hauck J, Hendriks RJJ, Hernández G, Jetz W, Karlsson-Vinkhuyzen SI, Kim H, King N, Kok MTJ, Kolomytsev GO, Lazarova T, Leadley P, Lundquist CJ, García Márquez J, Meyer C, Navarro LM, Nesshöver C, Ngo HT, Ninan KN, Palomo MG, Pereira LM, Peterson GD, Pichs R, Popp A, Purvis A, Ravera F, Rondinini C, Sathyapalan J, Schipper AM, Seppelt R, Settele J, Sitas N, Van Vuuren D (2017) Multiscale scenarios for nature futures. Nat Ecol Evol 1:1416–1419. https://doi.org/10.1038/s41559-017-0273-9
Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273. https://doi.org/10.1073/pnas.1222463110
Rounsevell MDA, Arneth A, Alexander P, Brown DG, de Noblet-Ducoudré N, Ellis E, Finnigan J, Galvin K, Grigg N, Harman I, Lennox J, Magliocca N, Parker D, O’Neill BC, Verburg PH, Young O (2014) Towards decision-based global land use models for improved understanding of the Earth system. Earth Syst Dyn 5:117–137. https://doi.org/10.5194/esd-5-117-2014
Rounsevell MDA, Arneth A, Brown C, Cheung WWL, Gimenez O, Holman I, Leadley P, Luján C, Mahevas S, Maréchaux I, Pélissier R, Verburg PH, Vieilledent G, Wintle BA, Shin Y-J (2021) Identifying uncertainties in scenarios and models of socio-ecological systems in support of decision-making. One Earth 4:967–985. https://doi.org/10.1016/j.oneear.2021.06.003
Searchinger TD, Beringer T, Strong A (2017) Does the world have low-carbon bioenergy potential from the dedicated use of land? Energy Policy 110:434–446. https://doi.org/10.1016/j.enpol.2017.08.016
Smith B, Wärlind D, Arneth A, Hickler T, Leadley P, Siltberg J, Zaehle S (2014) Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11:2027–2054. https://doi.org/10.5194/bg-11-2027-2014
Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S, De Vries W, De Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1217–c. https://doi.org/10.1126/science.1259855
Turner PA, Field CB, Lobell DB, Sanchez DL, Mach KJ (2018) Unprecedented rates of land-use transformation in modelled climate change mitigation pathways. Nat Sustain 1:240–245. https://doi.org/10.1038/s41893-018-0063-7
Uden S, Dargusch P, Greig C (2021) Cutting through the noise on negative emissions. Joule 5:1956–1970. https://doi.org/10.1016/j.joule.2021.06.013
van Vuuren DP, Kriegler E, O’Neill BC, Ebi KL, Riahi K, Carter TR, Edmonds J, Hallegatte S, Kram T, Mathur R, Winkler H (2014) A new scenario framework for Climate Change Research: scenario matrix architecture. Clim Change 122:373–386. https://doi.org/10.1007/s10584-013-0906-1
WHO (2014) Global Nutrition Targets 2025 (Policy Brief Series). WHO, Geneva
Willett W, Rockström J, Loken B, Springmann M, Lang T, Vermeulen S, Garnett T, Tilman D, Declerck F, Crona B, Fox E, Bignet V, Troell M, Lindahl T, Singh S, Cornell SE, Reddy KS, Narain S, Nishtar S, Murray CJL (2019) Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393:447–492. https://doi.org/10.1016/S0140-6736(18)31788-4
Acknowledgements
The authors gratefully acknowledge Matthew Brown and Jonathan Porter of Countryscape (https://countryscape.org) for data visualisation of Fig. 2.
Funding
No funding was received for conducting this study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Handled by Jan Kuiper, Stockholm Resilience Centre, Sweden.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Alexander, P., Henry, R., Rabin, S. et al. Mapping the shared socio-economic pathways onto the Nature Futures Framework at the global scale. Sustain Sci (2023). https://doi.org/10.1007/s11625-023-01415-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11625-023-01415-z