Sustainability Science

, Volume 14, Issue 4, pp 991–1000 | Cite as

Futurizing politics and the sustainability of real-world experiments: what role for innovation and exnovation in the German energy transition?

  • Martin DavidEmail author
  • Matthias Gross
Special Feature: Original Article The politics of making and un-making (sustainable) futures
Part of the following topical collections:
  1. Special Feature: The politics of making and un-making (sustainable) futures


The German energy transition towards more sustainable forms of energy production has been characterized as a large-scale or real-world experiment. Whereas experiments are open-ended processes set up explicitly to allow (or even generate) surprises, by contrast sustainability implies the pursuit of clearly defined, normative ends. Whereas much of the literature on system transformation builds on the concept of innovation, our hypothesis is that focusing on the “natural” flipside of innovation—called here “exnovation,” i.e., departing from unsustainable pathways—should also be seen as a valuable conceptual strategy for coping with the tension between the unavoidable indeterminacy resulting from unknown risks and the necessary amendment and redefinition of goals and rules. In this paper the German energy transition (Energiewende) is used to exemplify the recursive processes of experimentation that make it possible to accommodate surprise, and, thus, to conceptualize the unavoidable tension between innovation and the maintenance of older, unsustainable structures.


Futurization Transformation Innovation Exnovation Real-world experiment 



  1. Akyelken N, Banister D, Givoni M (2018) The sustainability of shared mobility in London: the dilemma for governance. Sustainability 10(2):420. Google Scholar
  2. Arnold A, David M, Hanke G, Sonnberger M (2015) Einleitung. In: Arnold A, David M, Hanke G, Sonnberger M (eds) Innovation—exnovation. Über Prozesse des Abschaffens und Erneuerns in der Nachhaltigkeitstransformation. Metropolis, Marburg, pp 7–12Google Scholar
  3. Bartosch U, Hennicke P, Weiger H (2014) Gemeinschaftsprojekt Energiewende - Der Fahrplan zum Erfolg, Bund für Umwelt und Naturschutz Deutschland (BUND) und Vereinigung Deutscher Wissenschaftler (VDW). Oekom, MunichGoogle Scholar
  4. Beck S (2012) The challenges of building cosmopolitan climate expertise: the case of Germany. Wiley Interdiscip Rev Clim Change 3(1):1–17. Google Scholar
  5. Bleicher A, Gross M (2016) Geothermal heat pumps and the vagaries of subterranean geology: energy independence at a household level as a real world experiment. Renew Sustain Energy Rev 64:279–288. Google Scholar
  6. Blome-Drees J, Degens P, Schimmele C (2016) Auswirkungen und Inanspruchnahme neuer Regelungen im Rahmen der Novelle des Genossenschaftsgesetzes von 2006. Zeitschrift für das gesamte Genossenschaftswesen 66(2):79–92. Google Scholar
  7. Bulkeley H, Coenen L, Frantzeskaki N, Hartmann C, Kronsell A, Mai L, Marvin S, McCormick K, Van Steenbergen F, Palgan YV (2016) Urban living labs: governing urban sustainability transitions. Curr Opin Environ Sustain 22:13–17. Google Scholar
  8. Bynum J, Passow H, Carmichael D, Skinner J (2018) Exnovation of low value care: a decade of prostate-specific antigen screening practices. J Am Geriatr Soc 67(1):29–36. Google Scholar
  9. Cabinet of Germany (2002) Perspektiven für Deutschland - Unsere Nachhaltigkeitsstrategie. Cabinet of Germany, BerlinGoogle Scholar
  10. Caniglia G, Schäpke N, Lang DJ, Abson DJ, Luederitz C, Wiek A, Laubichler M, Gralla F, von Wehrden H (2017) Experiments and evidence in sustainability science: a typology. J Clean Prod 169:39–47. Google Scholar
  11. Clausen J (2017) Stromeinspeisungsgesetz und EEG. Evolution2green, online:
  12. Couture, TD, Jacobs, D, Appleman, N (2018) A word on low cost renewables, the renewables breakthrough: how to secure low cost renewables. Agora Energiewende, Berlin, online:
  13. David M (2017) Moving beyond the heuristic of creative destruction: targeting exnovation with policy mixes for energy transitions. Energy Res Soc Sci 33:138–146. Google Scholar
  14. David M (2018) The role of organized publics in articulating the exnovation of fossil-fuel technologies for intra-and intergenerational energy justice in energy transitions. Appl Energy 228:339–350. Google Scholar
  15. De Hoop E, Pols A, Romijn H (2016) Limits to responsible innovation. J Responsib Innov 3(2):110–134. Google Scholar
  16. De Soto HG (2000) Contested landscapes: reconstructing environment and memory in postsocialist saxony-anhalt. In: Berdahl D, Bunzi M, Lampland M (eds) Altering States: Ethnographies of transition in Eastern Europe and the Former Soviet Union. University of Michigan Press, Ann Arbor, pp 96–113Google Scholar
  17. Factor S (2015) The experimental economy of geoengineering. J Cultural Econ 8(3):309–324. Google Scholar
  18. Federal Constitutional Court (2017) Kernbrennstoffsteuergesetz mit dem Grundgesetz unvereinbar und nichtig. Online:
  19. Felt U, Igelsböck J, Schikowitz A, Völker T (2016) Transdisciplinary sustainability research in practice: between imaginaries of collective experimentation and entrenched academic value orders. Sci Technol Human Values 41(4):732–761. Google Scholar
  20. Geels FW, Kern F, Fuchs G, Hinderer N, Kungl G, Mylan J, Neukirch M, Wassermann S (2016) The enactment of socio-technical transition pathways: a reformulated typology and a comparative multi-level analysis of the German and UK low-carbon electricity transitions (1990–2014). Res Policy 45(4):896–913. Google Scholar
  21. German Federal Environmental Agency (2017) Daten und Fakten zu Braun- und Steinkohlen. Status quo und Perspektiven, Dessau-RoßlauGoogle Scholar
  22. Graichen P (2003) Kommunale Energiepolitik und die Umweltbewegung. Eine Public-Choice-Analyse der “Stromrebellen” von Schönau. Campus, Frankfurt aMGoogle Scholar
  23. Gross M (2016) Give me an experiment and I will raise a laboratory. Sci Technol Human Values 41(4):613–634. Google Scholar
  24. Gross M, Hoffmann-Riem H (2005) Ecological restoration as a real-world experiment: designing robust implementation strategies in an urban environment. Public Underst Sci 14(3):269–284. Google Scholar
  25. Gross M, Mautz R (2015) Renewable energies. Routledge, LondonGoogle Scholar
  26. Gross M, Schulter-Römer N (2019) Remaking participatory democracy through experimental design. Sci Technol Human Values. Google Scholar
  27. Gross M, Hoffmann-Riem H, Krohn W (2003) Realexperimente: robustheit und Dynamik ökologischer Gestaltungen in der Wissensgesellschaft. Soziale Welt 54(3):241–258.
  28. Hatch MT (1986) Politics and nuclear power: energy policy in Western Europe. The University Press Of Kentucky, LexingtonGoogle Scholar
  29. Heinrich Böll Foundation (2015) Kohleatlas, Daten und Fakten über einen globalen Brennstoff. Heinrich-Böll-Stiftung; Bund für Umwelt und Naturschutz Deutschland – Friends of the Earth Germany, BerlinGoogle Scholar
  30. Hennicke P, Johnson JP, Kohler S, Seifried D (1985) Die Energiewende ist möglich. Fischer, FrankfurtGoogle Scholar
  31. Heyen AD, Hermwille L, Wehnert T (2017) Out of the comfort zone! governing the exnovation of unsustainable technologies and practices. GAIA-Ecol Perspect Sci Soc 26(4):326–331. Google Scholar
  32. Hodson M, Evans J, Schliwa G (2018) Conditioning experimentation: the struggle for place-based discretion in shaping urban infrastructures. Environ Plan C Politics Space. Google Scholar
  33. Hopkins D, Schwanen T (2019) Experimentation with vehicle automation. In: Jenkins K, Hopkins D (eds) Transitions in energy efficiency and demand. Routledge, London, pp 72–92Google Scholar
  34. Howaldt J, Kopp R, Schwarz M (2017) Experimentelle Praktiken und nachahmende Wiederholung: Überlegungen zu einer Theorie sozialer Innovationen. In: Böschen S, Gross M, Krohn W (eds) Experimentelle Gesellschaft. Nomos, Baden-Baden, pp 143–160. Google Scholar
  35. Huber J (1979) Bunt wie der Regenbogen. Selbstorganisierte Projekte und alternative Ökonomie in Deutschland. In: Huber J (ed) Anders arbeiten – anders wirtschaften. Fischer, Frankfurt, pp 111–121Google Scholar
  36. Hüttl RF, Ossing F (2011) Der Ausstieg aus der Atomenergie und die Energiebilanz Deutschlands. Syst Erde 1(2):8–15. Google Scholar
  37. ISSC and UNESCO (2013) World social science report 2013. OECD Publishing and UNESCO Publishing, Paris, Changing Global EnvironmentsGoogle Scholar
  38. Jacobsson S, Lauber V (2006) The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy Policy 34(3):256–276. Google Scholar
  39. Jasanoff S, Kim S-H (2013) Sociotechnical imaginaries and national energy policies. Sci Cult 22(2):189–196. Google Scholar
  40. Johnstone P, Stirling A (2015) Comparing nuclear power trajectories in Germany and the UK: From ‘Regimes’ to ‘Democracies’ in Sociotechnical Transitions and Discontinuities (2015), University of Sussex, SPRU working paper series.
  41. Kahla F, Holstenkamp L, Müller JR, Degenhart H (2017) Entwicklung und Stand von Bürgerenergiegesellschaften und Energiegenossenschaften in Deutschland. Working Paper Series in Business and Law No. 27, Leuphana University, LüneburgGoogle Scholar
  42. Kaplan RM, Chambers DA, Glasgow RE (2018) Behavioral medicine and the benefits of healthcare: a critical appraisal and the need for exnovation. In: Fisher E, Cameron L, Christensen AJ, Ehlert U, Guo Y, Oldenburg B, Snoek F (eds) Principles and concepts of behavioral medicine. Springer, New York, pp 1069–1086Google Scholar
  43. Kimberly JR (1981) Managerial innovation. In: Nystrom PC, Starbuck WH (eds) Oxford-handbook of organizational design. Oxford University Press, Oxford, pp 84–104Google Scholar
  44. Krohn W (2007) Nature, technology, and the acknowledgment of waste. Nat Cult 13(3):139–160. Google Scholar
  45. Krohn W, Weingart P (1987) Nuclear power as a social experiment: European political “fall out” from the Chernobyl meltdown. Sci Technol Human Values 12(2):52–58. Google Scholar
  46. Kungl G, Geels FW (2018) Sequence and alignment of external pressures in industry destabilisation: understanding the downfall of incumbent utilities in the German energy transition (1998–2015). Environ Innov Soc Transit 26:78–100. Google Scholar
  47. Laird FN, Stefes C (2009) The diverging paths of German and United States policies for renewable energy: sources of difference. Energy Policy 37(7):2619–2629. Google Scholar
  48. Lauber V, Jacobsson S (2015) Lessons from Germany’s Energiewende. In: Fagerberg J, Laestadius S, Martin BR (eds) The triple challenge for europe: economic development, climate change, and governance. Oxford University Press, Oxford, pp 173–203Google Scholar
  49. Layzer J (2008) Natural experiments: ecosystem-based management and the environment. MIT Press, CambridgeGoogle Scholar
  50. Leipprand A, Flachsland C (2018) Regime destabilization in energy transitions: the German debate on the future of coal. Energy Res Soc Sci 40:190–204. Google Scholar
  51. Levidow L, Carr S (2007) GM crops on trial: technological development as a real-world experiment. Futures 39(4):408–431. Google Scholar
  52. Lösch A, Schneider C (2017) Smart-Grid-Experimente im Macht-Wissens-Dispositiv der Energiewende. In: Böschen S, Gross M, Krohn W (eds) Experimentelle Gesellschaft. Nomos, Baden-Baden, pp 161–184. Google Scholar
  53. Mautz R, Byzio A, Rosenbaum W (2008) Auf dem Weg zur Energiewende: Die Entwicklung der Stromproduktion aus erneuerbaren Energien in Deutschland. Universitätsverlag Göttingen, GöttingenGoogle Scholar
  54. Muller B (2018) New horizons for sustainable architecture: hydrological design for the ecologically responsive city. Nat Cult 13(2):189–207. Google Scholar
  55. Prové C, Kemper D, Loudiyi S (2018) The modus operandi of urban agriculture initiatives: toward a conceptual framework. Nat Cult 13(1):17–46. Google Scholar
  56. Radkau J (2011) Die Ära der Ökologie: Eine Weltgeschichte. CH Beck, MünchenGoogle Scholar
  57. Reinermann JL, Behr F (eds) (2017) Die Experimentalsstadt, Kreativität und die kulturelle Dimension der Nachhaltigen Entwicklung. Springer VS, Wiesbaden. Google Scholar
  58. Renn O, Marshall JP (2016) Coal, nuclear and renewable energy policies in Germany: from the 1950s to the “Energiewende”. Energy Policy 99(1):224–232. Google Scholar
  59. Rheinberger HJ (1997) Toward a history of epistemic things: synthesizing proteins in the test tube. Stanford University Press, StanfordGoogle Scholar
  60. Rogge KS, Johnstone P (2017) Exploring the role of phase-out policies for low-carbon energy transitions: the case of the German Energiewende. Energy Res Soc Sci 33:128–137. Google Scholar
  61. Rohracher H (2018) Analyzing the socio-technical transformation of energy systems: the concept of ‘sustainability transitions. In: Davidson D, Gross M (eds) Oxford handbook of energy and society. Oxford University Press, Oxford, pp 45–60. Google Scholar
  62. Roth R (1994) Lokale Bewegungsnetzwerke und die Institutionalisierung von neuen sozialen Bewegungen. In: Neidhardt F (ed) Öffentlichkeit, öffentliche Meinung, soziale Bewegungen. Westdeutscher Verlag, Opladen, pp 413–436Google Scholar
  63. Rucht D (2008) Anti-Atomkraftbewegung. In: Roth Rucht D (ed) Die Sozialen Bewegungen in Deutschland nach 1945. Ein Handbuch. Suhrkamp, Frankfurt a.M, pp 245–266Google Scholar
  64. Sander H (2017) Ende Gelände: Anti-Kohle-Proteste in Deutschland. Forsch J Soz Beweg 30(1):26–36Google Scholar
  65. Sengers F, Wieczorek AJ, Raven R (2016) Experimenting for sustainability transitions: a systematic literature review. Technol Forecast Soc Change. Google Scholar
  66. van de Poel I, Asveld L, Mehos DC (eds) (2017) New perspectives on technology in society: experimentation beyond the laboratory. Routledge, LondonGoogle Scholar
  67. Völker T (2017) Preserving landscapes and re-ordering science-society relations: imagining the future in transdisciplinary sustainability research. In: Verschraegen G, Vandermoere F, Braeckmans L, Segaert B (eds) Imagined futures in science, technology and society. Routledge, London, pp 114–136Google Scholar
  68. Wehnert T (2017) Zwischen Innovation und Exnovation: Anforderungen an eine Forschung für den Kohleausstieg. Wuppertal Instiut, online:
  69. Weiland S, Bleicher A, Polzin C, Rauschmayer F, Rode J (2017) The nature of experiments for sustainability transformations: a search for common ground. J Clean Prod 169:30–38. Google Scholar
  70. Yin R (1979) Changing urban bureaucracies: How new practices become routinized. The Rand Corporation, Santa MonicaGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Helmholtz Centre for Environmental Research GmbH – UFZLeipzigGermany
  2. 2.Institute of SociologyUniversity of JenaJenaGermany

Personalised recommendations