Skip to main content

Advertisement

Log in

Non-contrast MRI of micro-vascularity of the feet and toes

  • Technical Note
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to develop novel non-contrast MR perfusion techniques for assessing micro-vascularity of the foot in human subjects.

Methods

All experiments were performed on a clinical 3 T scanner using arterial spin labeling (ASL). Seven healthy subjects (30–72 years old, 5 males and 2 females) were enrolled and bilateral feet were imaged with tag-on and tag-off alternating inversion recovery spin labeling for determining micro-vascularity. We compared an ASL technique with 1-tag against 4-tag pulses. For perfusion, we determined signal increase ratio (SIR) at varying inversion times (TI) from 0.5 to 2 s. SIR versus TI data were fit to determine perfusion metrics of peak height (PH), time to peak (TTP), full width at half maximum (FWHM), area under the curve (AUC), and apparent blood flow (aBF) in the distal foot and individual toes. Using analysis of variance (ANOVA), effects of tag pulse and region of interest (ROI) on the mean perfusion metrics were assessed. In addition, a 4-tag pulse perfusion experiment was performed on patients with peripheral artery disease (PAD) and Raynaud’s disease.

Results

Using our MR perfusion techniques, SIR versus TI data showed well-defined leading and trailing edges, with a peak near TI of 0.75–1.0 s and subsiding quickly to near zero by TI of 2 s, particularly when 4-tag pulses were used. When imaged with 4-tag pulse, we found significantly greater values in perfusion metrics, as compared to 1-tag pulse. The patients with PAD and Raynaud’s disease showed a reduced or scattered perfusion curves compared to the healthy control.

Conclusion

MR perfusion imaging of the distal foot shows greater SIR and perfusion metrics with the 4-tag pulse compared to the 1-tag pulse technique. This will likely benefit those with low perfusion due to aging, PAD, diabetic foot, and other vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO Media Center (http://www.who.int/mediacentre/factsheets/fs317/en/).

  2. Selvin E, Erlinger TP. Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation. 2004;110:738–43.

    Article  PubMed  Google Scholar 

  3. Huysman E, Mathieu C. Diabetes and peripheral vascular disease. Acta Chir Belg. 2009;109:587–94.

    Article  CAS  PubMed  Google Scholar 

  4. Marso SP, Hiatt WR. Peripheral arterial disease in patients with diabetes. J Am Coll Cardiol. 2006;47:921–9.

    Article  PubMed  Google Scholar 

  5. Reiber GE, Boyko EJ, Smith DG. Low extremity foot ulcer and amputations in diabetics. Diabetics in America, 2nd Edition: NIH national institute of diabetics and digestive and kidney diseases. NIH Publication, No. 95-1468, 1995.

  6. American Diabetes Association: (http://www.diabetes.org/living-with-diabetes/complications/heart-disease/peripheral-arterial-disease.html)

  7. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23:37–45.

    Article  CAS  PubMed  Google Scholar 

  8. Kim SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med. 1995;34:293–301.

    Article  CAS  PubMed  Google Scholar 

  9. Alsop DC, Detre JA. Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology. 1998;208:410–6.

    Article  CAS  PubMed  Google Scholar 

  10. Williams DS, Grandis DJ, Zhang W, Koretsky AP. Magnetic resonance imaging of perfusion in the isolated rat heart using spin inversion of arterial water. Magn Reson Med. 1993;30:361–5.

    Article  CAS  PubMed  Google Scholar 

  11. Poncelet BP, Koelling TM, Schmidt CJ, et al. Measurement of human myocardial perfusion by double-gated flow alternating inversion recovery EPI. Magn Reson Med. 1999;41:510–9.

    Article  CAS  PubMed  Google Scholar 

  12. Miyazaki M, Zhou X, Hoshino T, Yokoyama K, Ishimura R, Nitatori T. Non-contrast myocardial perfusion using a novel 4D magnetic resonance arterial spin labeling technique: initial experience. Microvasc Res. 2015;98:94–101.

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki M, Akahane M. Non-contrast enhanced MR angiography: established techniques. J Magn Reson Imaging. 2012;35:1–19.

    Article  PubMed  Google Scholar 

  14. Miyazaki M, Isoda H. Non-contrast-enhanced MR angiography of the abdomen. Eur J Radiol. 2011;80:9–23.

    Article  PubMed  Google Scholar 

  15. Miyazaki M, Lee VS. Nonenhanced magnetic resonance angiography: state-of-the-art. Radiology. 2008;248:20–43.

    Article  PubMed  Google Scholar 

  16. Williams DS, Zhang W, Koretsky AP, Adler S. Perfusion imaging of the rat kidney with MR. Radiology. 1994;190:813–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wang JJ, Hendrich KS, Jackson EK, Ildstad ST, Williams DS, Ho C. Perfusion quantitation in transplanted rat kidney by MRI with arterial spin labeling. Kidney Int. 1998;53:1783–91.

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi J, Ohmoto-Sekine Y, Yoshida T, Miyazaki M. Comparison of axial and coronal acquisitions by non-contrast-enhanced renal 3D MR angiography using flow-in time-spatial labeling inversion pulse. MAGMA. 2020;33:95–102.

    Article  CAS  PubMed  Google Scholar 

  19. Shonai T, Takahashi T, Ikeguchi H, Miyazaki M, Amano K, Yui M. Improved arterial visibility using short-tau inversion-recovery (STIR) fat suppression in non-contrast-enhanced time-spatial labeling inversion pulse (Time-SLIP) renal MR angiography (MRA). J Magn Reson Imaging. 2009;29:1471–7.

    Article  PubMed  Google Scholar 

  20. Raynaud JS, Duteil S, Vaughan JT, et al. Determination of skeletal muscle perfusion using arterial spin labeling NMRI: validation by comparison with venous occlusion plethysmography. Magn Reson Med. 2001;46:305–11.

    Article  CAS  PubMed  Google Scholar 

  21. Frank LR, Wong EC, Haseler LJ, Buxton RB. Dynamic imaging of perfusion in human skeletal muscle during exercise with arterial spin labeling. Magn Reson Med. 1999;42:258–67.

    Article  CAS  PubMed  Google Scholar 

  22. Schewzow K, Fiedler GB, Meyerspeer M, et al. Dynamic ASL and T2-weighted MRI in exercising calf muscle at 7 T: a feasibility study. Magn Reson Med. 2015;73:1190–5.

    Article  PubMed  Google Scholar 

  23. Edalati M, Hastings MK, Muccigrosso D, et al. Intravenous contrast-free standardized exercise perfusion imaging in diabetic feet with ulcers. J Magn Reson Imaging. 2019;50:474–80.

    Article  PubMed  Google Scholar 

  24. Suo S, Zhang L, Tang H, et al. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level dependent, and intravoxel incoherent motion techniques. J Cardiovasc Magn Reson. 2018;20:18. https://doi.org/10.1186/s12968-018-0441-3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Englund EK, Rodgers AR, Langham MC, et al. Measurement of skeletal muscle perfusion dynamics with pseudo-continuous arterial spin labeling (pCASL): Assessment of relative labeling efficiency at rest and during hyperemia, and comparison to pulsed arterial spin labeling (PASL). J Magn Reson Imaging. 2016;44:929–39. https://doi.org/10.1002/jmri.25247.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zaharchuk G. Theoretical basis of hemodynamic MR imaging techniques to measure cerebral blood volume, cerebral blood flow, and permeability. AJNR Am J Neuroradiol. 2007;28:1850–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Branch KR, Haley RD, Bittencourt MS, Patel AR, Hulten E, Blankstein R. Myocardial computed tomography perfusion. Cardiovasc Diagn Ther. 2017;7:452–62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang T, Su H, Gu J, Chen Q, Xu Q, Chen BT. Evaluation of skeletal muscle perfusion in a canine hind limb ischemia model using CT perfusion imaging. Diagn Interv Radiol. 2020;26:28–33.

    Article  CAS  PubMed  Google Scholar 

  29. Weber MA, Krix M, Delorme S. Quantitative evaluation of muscle perfusion with CEUS and with MR. Eur Radiol. 2007;17:2663–74.

    Article  PubMed  Google Scholar 

  30. Leppek R, Hoos O, Sattler A, et al. MR-imaging of lower leg muscle perfusion. Herz. 2004;29:32–46. https://doi.org/10.1007/s00059-004-2532-1.

    Article  PubMed  Google Scholar 

  31. Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med. 1998;39:702–8.

    Article  CAS  PubMed  Google Scholar 

  32. Kim SG, Tsekos NV. Perfusion imaging by a flow-sensitive alternating inversion recovery (FAIR) technique: application to functional brain imaging. Magn Reson Med. 1997;37:425–4355.

    Article  CAS  PubMed  Google Scholar 

  33. Miyazaki M, Yamamoto A, Malis V, et al. Time-resolved non-contrast magnetic resonance perfusion imaging of paraspinal muscle. J Magn Reson Imaging. 2022;56:1591–9. https://doi.org/10.1002/jmri.28123.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miyazaki M, Umeda M, Yoshimori K, et al. (2019) Fresh blood imaging (FBI) with centric ky-kz trajectory and exponential refocusing flop angle: Comparison with standard FBI. In: 31th Soc Magn Reson Angiogr Annu Meet. Nantes, France. Aug 30, 2019.

  35. Malis V, Bae WC, Yamamoto A, McEvoy LK, McDonald MA, Miyazaki M. Age-related decline of intrinsic cerebrospinal fluid outflow in healthy humans detected with non-contrast spin-labeling MR imaging. Epub Magn Reason Med Sci. 2022. https://doi.org/10.2463/mrms.mp.2022-0117.

    Article  Google Scholar 

  36. Miyazaki M, Malis V, Kungsamutr J, Yamamoto A, McDonald MA, McEvoy LK, Bae WC. Physical exercise alters egress pathways for intrinsic CSF outflow: an investigation performed with spin-labeling MR imaging. Epub Magn Reason Med Sci. 2023. https://doi.org/10.2463/mrms.mp.2023-0005.

    Article  Google Scholar 

  37. Fronek A, Coel M. Quantitative ultrasonographic studies of lower extremity flow velocities in health and disease. Circulation. 1976;53:957–60.

    Article  CAS  PubMed  Google Scholar 

  38. Chan AA, Nelson AJ. Simplified gamma-variate fitting of perfusion curves. IEEE Int Symp Biomed Imaging Nano Macro. 2004;2:1067–70.

    Google Scholar 

  39. Immerkaer J. Fast noise variance estimation. Comput Vis Image Underst. 1996;64(2):300–2.

    Article  Google Scholar 

  40. Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRA for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL for dementia. Magn Reason Med. 2015;73:102–16.

    Article  Google Scholar 

  41. Copen WA, Schaefer PW, Wu O. MR perfusion imaging in acute ischemic stroke. Neuroimaging Clin N Am. 2011;21:259–83.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Murray AK, Herrick AL, King TA. Laser Doppler imaging: a developing technique for application in the rheumatic diseases. Rheumatology (Oxford). 2004;43:1210–8.

    Article  CAS  PubMed  Google Scholar 

  43. Fredriksson I, Larsson M, Stromberg T. Measurement depth and volume in laser Doppler flowmetry. Microvasc Res. 2009;78:4–13.

    Article  PubMed  Google Scholar 

  44. Min S, Lee H, Kim SY, et al. Local changes in microcirculation and the analgesic effects of acupuncture: a laser Doppler perfusion imaging study. J Altern Complement Med. 2015;21:46–52.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Demoulin C, Crielaard JM, Vanderthommen M. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Joint Bone Spine. 2007;74:9–13.

    Article  PubMed  Google Scholar 

  46. Sakai Y, Matsuyama Y, Nakamura H, et al. The effect of muscle relaxant on the paraspinal muscle blood flow: a randomized controlled trial in patients with chronic low back pain. Spine (Phila Pa 1976). 2008;33:581–7.

    Article  PubMed  Google Scholar 

  47. Krix M, Weber MA, Krakowski-Roosen H, et al. Assessment of skeletal muscle perfusion using contrast-enhanced ultrasonography. J Ultrasound Med. 2005;24:431–41.

    Article  PubMed  Google Scholar 

  48. Duerschmied D, Olson L, Olschewski M, et al. Contrast ultrasound perfusion imaging of lower extremities in peripheral arterial disease: a novel diagnostic method. Eur Heart J. 2006;27:310–5.

    Article  PubMed  Google Scholar 

  49. Thompson RB, Aviles RJ, Faranesh AZ, et al. Measurement of skeletal muscle perfusion during postischemic reactive hyperemia using contrast-enhanced MRI with a step-input function. Magn Reson Med. 2005;54:289–98.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Heart, Lung, Blood Institute R01HL154092 and Canon Medical grant to Mitsue Miyazaki and by National Institute of Arthritis and Musculoskeletal and Skin Diseases P30 AR073761 in support of Mitsue Miyazaki and Won Bae. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or Veterans Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsue Miyazaki.

Ethics declarations

Conflict of interest

Dr. Bae received research funding from General Electric Healthcare and Canon Medical Systems, USA. Dr. Miyazaki received research funding from Canon Medical Systems Corp., Japan. The remaining coauthors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, W.C., Malis, V., Vucevic, D. et al. Non-contrast MRI of micro-vascularity of the feet and toes. Jpn J Radiol (2024). https://doi.org/10.1007/s11604-024-01553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11604-024-01553-z

Keywords

Navigation