Skip to main content
Log in

Adaptive statistical iterative reconstruction for volume-rendered computed tomography portovenography: improvement of image quality

  • Technical Note
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Adaptive statistical iterative reconstruction (ASIR) is a reconstruction technique for computed tomography (CT) that reduces image noise. The purpose of our study was to investigate whether ASIR improves the quality of volume-rendered (VR) CT portovenography.

Materials and methods

Institutional review board approval, with waived consent, was obtained. A total of 19 patients (12 men, 7 women; mean age 69.0 years; range 25–82 years) suspected of having liver lesions underwent three-phase enhanced CT. VR image sets were prepared with both the conventional method and ASIR. The required time to make VR images was recorded. Two radiologists performed independent qualitative evaluations of the image sets. The Wilcoxon signed-rank test was used for statistical analysis. Contrast-noise ratios (CNRs) of the portal and hepatic vein were also evaluated.

Results

Overall image quality was significantly improved by ASIR (P < 0.0001 and P = 0.0155 for each radiologist). ASIR enhanced CNRs of the portal and hepatic vein significantly (P < 0.0001). The time required to create VR images was significantly shorter with ASIR (84.7 vs. 117.1 s; P = 0.014).

Conclusion

ASIR enhances CNRs and improves image quality in VR CT portovenography. It also shortens the time required to create liver VR CT portovenographs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee SS, Kim TK, Byun JH, Ha HK, Kim PN, Kim AY, et al. Hepatic arteries in potential donors for living related liver transplantation: evaluation with multi-detector row CT angiography. Radiology 2003;227:391–399.

    Article  PubMed  Google Scholar 

  2. Kang HK, Jeong YY, Choi JH, Choi S, Chung TW, Seo JJ, et al. Three-dimensional multi-detector row CT portal venography in the evaluation of portosystemic collateral vessels in liver cirrhosis. Radiographics 2002;22:1053–1061.

    PubMed  Google Scholar 

  3. Guiney MJ, Kruskal JB, Sosna J, Hanto DW, Goldberg SN, Raptopoulos V. Multi-detector row CT of relevant vascular anatomy of the surgical plane in split-liver transplantation. Radiology 2003;229:401–407.

    Article  PubMed  Google Scholar 

  4. Sahani D, Mehta A, Blake M, Prasad S, Harris G, Saini S. Preoperative hepatic vascular evaluation with CT and MR angiography: implications for surgery. Radiographics 2004;24:1367–1380.

    Article  PubMed  Google Scholar 

  5. Radtke A, Nadalin S, Sotiropoulos GC, Molmenti EP, Schroeder T, Valentin-Gamazo C, et al. Computer-assisted operative planning in adult living donor liver transplantation: a new way to resolve the dilemma of the middle hepatic vein. World J Surg 2007;31:175–185.

    Article  CAS  PubMed  Google Scholar 

  6. Papke K, Kuhl CK, Fruth M, Haupt C, Schlunz-Hendann M, Sauner D, et al. Intracranial aneurysms: role of multidetector CT angiography in diagnosis and endovascular therapy planning. Radiology 2007;244:532–540.

    Article  PubMed  Google Scholar 

  7. Villablanca JP, Rodriguez FJ, Stockman T, Dahliwal S, Omura M, Hazany S, et al. MDCT angiography for detection and quantification of small intracranial arteries: comparison with conventional catheter angiography. AJR Am J Roentgenol 2007;188:593–602.

    Article  PubMed  Google Scholar 

  8. Saba L, Caddeo G, Sanfilippo R, Montisci R, Mallarini G. Efficacy and sensitivity of axial scans and different reconstruction methods in the study of the ulcerated carotid plaque using multidetector-row CT angiography: comparison with surgical results. AJNR Am J Neuroradiol 2007;28:716–723.

    Article  CAS  PubMed  Google Scholar 

  9. Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W, et al. Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 2007;244:419–428.

    Article  PubMed  Google Scholar 

  10. Das KM, El-Menyar AA, Salam AM, Singh R, Dabdoob WAK, Albinali HA, et al. Contrast-enhanced 64-section coronary multidetector CT angiography versus conventional coronary angiography for stent assessment. Radiology 2007;245:424–432.

    Article  CAS  PubMed  Google Scholar 

  11. Duong PA, Ferson PF, Fuhrman CR, McCurry KR, Lacomis JM. 3D-multidetector CT angiography in the evaluation of potential donors for living donor lung transplantation. J Thorac Imaging 2005;20:17–23.

    Article  PubMed  Google Scholar 

  12. Lawler LP, Fishman EK. Multi-detector row CT of thoracic disease with emphasis on 3D volume rendering and CT angiography. Radiographics 2001;21:1257–1273.

    CAS  PubMed  Google Scholar 

  13. Willmann JK, Baumert B, Schertler T, Wildermuth S, Pfammatter T, Verdun FR, et al. Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 2005;236:1083–1093.

    Article  PubMed  Google Scholar 

  14. Imamura HH. Anatomical keys and pitfalls in living donor liver transplantation. J Hepatobiliary Pancreat 2000;7:380–394.

    Article  CAS  Google Scholar 

  15. Onodera Y, Omatsu T, Nakayama J, Kamiyama T, Furukawa H, Todo S, et al. Peripheral anatomic evaluation using 3D CT hepatic venography in donors: significance of peripheral venous visualization in living-donor liver transplantation. AJR Am J Roentgenol 2004;183:1065–1070.

    PubMed  Google Scholar 

  16. Calhoun PS, Kuszyk BS, Heath DG, Carley JC, Fishman EK. Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 1999;19:745–764.

    CAS  PubMed  Google Scholar 

  17. Thibault JB, Sauer KD, Bouman CA, Hsieh J. A threedimensional statistical approach to improved image quality for multislice helical CT. Med Phys 2007;34:4526–4544.

    Article  PubMed  Google Scholar 

  18. Marin D, Nelson RC, Schindera ST, Richard S, Youngblood RS, Yoshizumi TT, et al. Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 2010;254:145–153.

    Article  PubMed  Google Scholar 

  19. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 2009;193:764–771.

    Article  PubMed  Google Scholar 

  20. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W. Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 2010;194:191–199.

    Article  PubMed  Google Scholar 

  21. Shin H, Falck C, Galanski M. Low-contrast detectability in volume rendering: a phantom study on multidector-row spiral CT data. Eur Radiol 2004;14:341–349.

    Article  PubMed  Google Scholar 

  22. Pelc JS, Beaulieu CF. Volume rendering of tendon-bone relationships using unenhanced CT. AJR Am J Roentgenol 2001;176:973–977.

    CAS  PubMed  Google Scholar 

  23. Samei E, Dobbins JT 3rd, Lo JY, Tornai MP. A framework for optimising the radiographic technique in digital X-ray imaging. Radiat Prot Dosimetry 2005;114:220–229.

    Article  PubMed  Google Scholar 

  24. Hwang GJ, Kim MJ, Yoo HS, Lee JT. Nodular hepatocellular carcinomas: detection with arterial-, portal-, and delayedphase images at spiral CT. Radiology 1997;202:383–388.

    CAS  PubMed  Google Scholar 

  25. Monzawa S, Ichikawa T, Nakajima H, Kitanaka Y, Omata K, Araki T. Dynamic CT for detecting small hepatocellular carcinoma: usefulness of delayed phase imaging. AJR Am J Roentgenol 2007;188:147–153.

    Article  PubMed  Google Scholar 

  26. Kim T, Murakami T, Takahashi S, Tsuda K, Tomoda K, Narumi Y, et al. Optimal phase of dynamic CT for detecting hepatocellular carcinoma: evaluation of unenhanced and triple-phase images. Abdom Imaging 1999;24:473–480.

    Article  CAS  PubMed  Google Scholar 

  27. Tsurusaki M, Sugimoto K, Fujii M, Sugimura K. Multidetector row helical CT of the liver: quantitative assessment of iodine concentration of intravenous contrast material on multiphasic CT: a prospective randomized study. Radiat Med 2004;22:239–245.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izuru Matsuda.

About this article

Cite this article

Matsuda, I., Hanaoka, S., Akahane, M. et al. Adaptive statistical iterative reconstruction for volume-rendered computed tomography portovenography: improvement of image quality. Jpn J Radiol 28, 700–706 (2010). https://doi.org/10.1007/s11604-010-0490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-010-0490-5

Key words

Navigation