Skip to main content
Log in

Accurate measurement of pulsatile flow velocity in a small tube phantom: comparison of phase-contrast cine magnetic resonance imaging and intraluminal Doppler guidewire

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We compared the accuracy of magnetic resonance imaging (MRI) measurements of pulsatile flow velocity in a small tube phantom using different spatial factors versus those obtained by intraluminal Doppler guidewire examination (as reference).

Materials and methods

We generated pulsatile flow velocities averaging about 20–290 cm/sec in a tube of 4 mm diameter; we performed phase-contrast cine MRI on pixels measuring 1.002–2.502 mm2. We quantified spatial peak flow velocities of a single pixel and a cluster of five pixels and spatial mean velocities within regions of interest enclosing the entire lumen in the phantom’s cross-section. Finally, we compared the measurements of temporally mean and maximum flow velocity with the Doppler measurements.

Results

Linear correlation was excellent between both measurements of spatial peak flow velocities in one pixel. The highest spatial resolution using spatial peak flow velocities of a single pixel allowed the most accurate MRI measurements of both temporally mean and maximum pulsatile flow velocity (r = 0.97 and 0.99, respectively: MRI measurement = 0.95x + 8.9 and 0.88x + 24.0 cm/s, respectively). Otherwise, MRI measurements were significantly underestimated at lower spatial resolutions.

Conclusion

High spatial resolution allowed accurate MRI measurement of temporally mean and maximum pulsatile flow velocity at spatial peak velocities of one pixel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek J, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenosis. N Engl J Med 1996;334:1703–1708.

    Article  CAS  PubMed  Google Scholar 

  2. Tamita K, Akasaka T, Takagi T, Yamamuro A, Yamabe K, Katayama M, et al. Effects of microvascular dysfunction on myocardial fractional flow reserve after percutaneous coronary intervention in patients with acute myocardial infarction. Catheter Cardiovasc Interv 2002;57:452–459.

    Article  PubMed  Google Scholar 

  3. Gould KL, Lipscomb K, Hamilton GW. Physiologic basis for assessing critical coronary stenosis: instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 1974;33:87–94.

    Article  CAS  PubMed  Google Scholar 

  4. Cole JS, Hartley CJ. The pulsed Doppler coronary artery catheter: preliminary report of a new technique for measuring rapid changes in coronary artery blood flow velocity in man. Circulation 1977;56:18–25.

    CAS  PubMed  Google Scholar 

  5. Wilson RF, Laughlin DE, Ackell PH, Chilian WM, Holida MD, Hartley CJ, et al. Transluminal, subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 1985;72:82–92.

    CAS  PubMed  Google Scholar 

  6. Doucette JW, Corl PD, Payne HM, Flynn AE, Goto M, Nassi M, et al. Validation of a Doppler guide wire for intravascular measurement of coronary artery flow velocity. Circulation 1992;85:1899–1911.

    CAS  PubMed  Google Scholar 

  7. Jenni R, Büchi M, Zweifel HJ, Ritter M. Impact of Doppler guidewire size and flow rates on intravascular velocity profiles. Cathet Cardiovasc Diagn 1998;45:96–100.

    Article  CAS  PubMed  Google Scholar 

  8. Ofili EO, Kern MJ, Labovitz AJ, St. Vrain JA, Segal J, Aquirre FV, et al. Analysis of coronary blood flow velocity dynamics in angiographically normal and stenosed arteries before and after endolumen enlargement by angioplasty. J Am Coll Cardiol 1993;21:308–316.

    Article  CAS  PubMed  Google Scholar 

  9. Segal J, Kern MJ, Scott NA, King SB 3rd, Doucette JW, Heuser RR, et al. Alterations of phasic coronary artery flow velocity in humans during percutaneous coronary angioplasty. J Am Coll Cardiol 1992;20:276–286.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson RF, Johnson MR, Marcus ML, Aylward PE, Skorton DJ, Collins S, et al. The effect of coronary angioplasty on coronary flow reserve. Circulation 1988;77:873–885.

    CAS  PubMed  Google Scholar 

  11. Wilson RF, White CW. Does coronary artery bypass surgery restore normal maximal coronary flow reserve? The effect of diffuse atherosclerosis and focal obstructive lesions. Circulation 1987;76:563–571.

    CAS  PubMed  Google Scholar 

  12. Fearon WF, Nakamura M, Lee DP, Rezaee M, Vagelos RH, Hunt SA, et al. Simultaneous assessment of fractional and coronary flow reserves in cardiac transplant recipients: Physiologic Investigation for Transplant Arteriopathy (PITA study). Circulation 2003;108:1605–1610.

    Article  PubMed  Google Scholar 

  13. Scwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE. Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993;88:993–1003.

    Google Scholar 

  14. Neglia D, Parodi O, Gallopin M, Sambuceti G, Giorgetti A, Pratali L, et al. Myocardial blood flow response to pacing tachycardia and to dipyridamole infusion in patients with dilated cardiomyopathy without overt heart failure: a quantitative assessment by positron emission tomography. Circulation 1995;92:796–804.

    CAS  PubMed  Google Scholar 

  15. Edelman RR, Manning WJ, Gervino E, Li W. Flow velocity quantification in human coronary arteries with fast, breath-hold MR angiography. J Magn Reson Imaging 1993;3:699–703.

    Article  CAS  PubMed  Google Scholar 

  16. Keegan J, Firmin D, Gatehouse P, Longmore D. The application of breath-hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: phantom data and initial in vivo results. Magn Reson Med 1994;31:526–536.

    Article  CAS  PubMed  Google Scholar 

  17. Chatzimavroudis GP, Zhang H, Halliburton SS, Moore JR, Simonetti OP, Schvartzman PR, et al. Clinical blood flow quantification with segmented k-space magnetic resonance phase velocity mapping. J Magn Reson Imaging 2003;17:65–71.

    Article  PubMed  Google Scholar 

  18. Shibata M, Sakuma H, Isaka N, Takeda K, Higgins CB, Nakano T. Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guide wire. J Magn Reson Imaging 1999;10:563–568.

    Article  CAS  PubMed  Google Scholar 

  19. Sakuma H, Blake LM, Amidon TM, O’sullivan M, Szolar DH, Furber AP, et al. Coronary flow reserve: noninvasive measurement in humans with breath-hold velocity-encoded cine MR imaging. Radiology 1996;198:745–750.

    CAS  PubMed  Google Scholar 

  20. Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 1993;30:82–91.

    Article  CAS  PubMed  Google Scholar 

  21. Nagel E, Thouet T, Klein C, Schalla S, Bornstedt A, Schnakkenburg B, et al. Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 2003;107:1738–1743.

    Article  PubMed  Google Scholar 

  22. Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 1993;3:377–385.

    Article  CAS  PubMed  Google Scholar 

  23. Machida H, Komori Y, Ueno E, Shen Y, Hirata M, Kojima S, et al. Spatial factors for quantifying constant flow velocity in a small tube phantom: comparison of phase-contrast cine MR imaging and intraluminal Doppler guidewire. Jpn J Radiol 2009;27:335–341.

    Article  PubMed  Google Scholar 

  24. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310.

    CAS  PubMed  Google Scholar 

  25. Nagel E, Bornstedt A, Hug J, Schnackenburg B, Wellnhofer E, Fleck E. Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med 1999;41:544–549.

    Article  CAS  PubMed  Google Scholar 

  26. Matre K, Ersland L, Larsen TH, Andersen E. In vitro agreement between magnetic resonance imaging and intraluminal Doppler ultrasound for high flow velocity measurements. Scand Cardiovasc J 2002;36:180–186.

    PubMed  Google Scholar 

  27. Hundley WG, Lange RA, Clarke GD, Meshack BM, Payne J, Landau C, et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 1996;93:1502–1508.

    CAS  PubMed  Google Scholar 

  28. Bedaux WL, Hofman MB, de Cock CC, Stoel MG, Visser CA, van Rossum AC. Magnetic resonance imaging versus Doppler guide wire in the assessment of coronary flow reserve in patients with coronary artery disease. Coron Artery Dis 2002;13:365–372.

    Article  PubMed  Google Scholar 

  29. Arheden H, Saeed M, Törnqvist E, Lund G, Wendland MF, Higgins CB, et al. Accuracy of segmented MR velocity mapping to measure small vessel pulsatile flow in a phantom simulating cardiac motion. J Magn Reson Imaging 2001;13:722–728.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Machida.

About this article

Cite this article

Machida, H., Komori, Y., Ueno, E. et al. Accurate measurement of pulsatile flow velocity in a small tube phantom: comparison of phase-contrast cine magnetic resonance imaging and intraluminal Doppler guidewire. Jpn J Radiol 28, 571–577 (2010). https://doi.org/10.1007/s11604-010-0472-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-010-0472-7

Key words

Navigation