Skip to main content
Log in

Spatial factors for quantifying constant flow velocity in a small tube phantom: comparison of phase-contrast cine-magnetic resonance imaging and the intraluminal Doppler guidewire method

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We examined the spatial factors influencing magnetic resonance (MR) flow velocity measurements in a small tube phantom and used the same measurements obtained with an intraluminal Doppler guidewire as reference.

Materials and methods

We generated constant flow velocities from approximately 40 to 370 cm/s in a tube 4 mm in diameter. We then performed segmented k-space, phase-contrast cine-MR imaging to quantify spatial peak flow velocities of one pixel and of five adjacent pixels as well as spatial mean velocities within regions of interest in a cross section of the phantom. Pixel dimensions ranged from 1.00 × 1.00 mm to 2.50 × 2.50 mm. We compared the MR measurements with the temporally averaged Doppler spectral peak velocities.

Results

For one pixel (r > 0.99: MR flow velocity for pixel dimension 1.00 × 1.00 mm = 1.03x + 9.8 cm/s), the linear correlation was excellent between flow velocities by MR and Doppler guidewire methods. However, for the five adjacent pixels, MR measurements were significantly underestimated using pixels 1.25 × 1.25 mm to 2.50 × 2.50 mm and for mean velocities for all pixel dimensions.

Conclusion

Relatively high spatial resolution allows accurate MR measurement of constant flow velocity in a small tube at spatial peak velocities for one pixel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edelman RR, Manning WJ, Gervino E, Li W. Flow velocity quantification in human coronary arteries with fast, breathhold MR angiography. J Magn Reson Imaging 1993;3:699–703.

    Article  CAS  PubMed  Google Scholar 

  2. Keegan J, Firmin D, Gatehouse P, Longmore D. The application of breath-hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: phantom data and initial in vivo results. Magn Reson Med 1994;31:526–536.

    Article  CAS  PubMed  Google Scholar 

  3. Chatzimavroudis GP, Zhang H, Halliburton SS, Moore JR, Simonettti OP, Schvartzman PR, et al. Clinical blood flow quantification with segmented k-space magnetic resonance phase velocity mapping. J Magn Reson Imaging 2003;17:65–71.

    Article  PubMed  Google Scholar 

  4. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 1995;195: 471–478.

    CAS  PubMed  Google Scholar 

  5. Nagel E, Bornstedt A, Hug J, Schnackenburg B, Wellnhofer E, Fleck E. Noninvasive determination of coronary blood flow velocity with magnetic resonance imaging: comparison of breath-hold and navigator techniques with intravascular ultrasound. Magn Reson Med 1999;41:544–549.

    Article  CAS  PubMed  Google Scholar 

  6. Pennell DJ, Keegan J, Firmin DN, Gatehouse PD, Underwood SR, Longmore DB. Magnetic resonance imaging of coronary arteries: technique and preliminary results. Br Heart J 1993;70:315–326.

    Article  CAS  PubMed  Google Scholar 

  7. Dodge JT, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal coronary arteries: influence of age, sex, anatomic variation and left ventricular hypertrophy or dilatation. Circulation 1992;86:232–246.

    PubMed  Google Scholar 

  8. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310.

    CAS  PubMed  Google Scholar 

  9. Wolf RL, Ehman RL, Riederer SJ, Rossman PJ. Analysis of systematic and random error in MR volumetric flow measurements. Magn Reson Med 1993;30:82–91.

    Article  CAS  PubMed  Google Scholar 

  10. Nagel E, Thouet T, Klein C, Schalla S, Bornstedt A, Schnackenburg B, et al. Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 2003;107:1738–1743.

    Article  PubMed  Google Scholar 

  11. Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast flow measurements in the presence of partial-volume effects. J Magn Reson Imaging 1993;3:377–385.

    Article  CAS  PubMed  Google Scholar 

  12. Meier D, Maier S, Bösiger P. Quantitative flow measurements on phantoms and on blood vessels with MR. Magn Reson Med 1988;8:25–34.

    Article  CAS  PubMed  Google Scholar 

  13. Matre K, Ersland L, Larsen TH, Andersen E. In vitro agreement between magnetic resonance imaging and intraluminal Doppler ultrasound for high flow velocity measurements. Scand Cardiovasc J 2002;36:180–186.

    Article  PubMed  Google Scholar 

  14. Hundley WG, Lange RA, Clarke GD, Meshack BM, Payne J, Landau C, et al. Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 1996;93:1502–1508.

    CAS  PubMed  Google Scholar 

  15. Shibata M, Sakuma H, Isaka N, Takeda K, Higgins CB, Nakano T. Assessment of coronary flow reserve with fast cine phase contrast magnetic resonance imaging: comparison with measurement by Doppler guide wire. J Magn Reson Imaging 1999;10:563–568.

    Article  CAS  PubMed  Google Scholar 

  16. Bedaux WL, Hofman MB, Wielopolski PA, de Cock CC, Hoffmann V, Oudkerk M, et al. Magnetic resonance imaging versus Doppler guide wire in the assessment of coronary flow reserve in patients with coronary artery disease. Coron Artery Dis 2002;13:365–372.

    Article  PubMed  Google Scholar 

  17. Sakuma H, Blake LM, Amidon TM, O’sullivan M, Szolar DH, Furber AP, et al. Coronary flow reserve: noninvasive measurement in humans with breath-hold velocity-encoded cine MR imaging. Radiology 1996;198:745–750.

    CAS  PubMed  Google Scholar 

  18. Beerbaum P, Körperich H, Gieseke J, Barth P, Peuster M, Meyer H, et al. Rapid left-to-right shunt quantification in children by phase contrast magnetic resonance imaging combined with sensitivity encoding. Circulation 2003;108: 1355–1361.

    Article  PubMed  Google Scholar 

  19. Korperich H, Gieseke J, Barth P, Hoogeveen R, Esdom H, Peterschröder A, et al. Flow volume and shunt quantification in pediatric congenital heart disease by real-time magnetic resonance velocity mapping: a validation study. Circulation 2004;109:1987–1993.

    Article  PubMed  Google Scholar 

  20. Pelc NJ, Bernstein MA, Shimakawa A, Glover GH. Encoding strategies for three-direction phase-contrast MR imaging of flow. J Magn Reson Imaging 1991;1:405–413.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Machida.

About this article

Cite this article

Machida, H., Komori, Y., Ueno, E. et al. Spatial factors for quantifying constant flow velocity in a small tube phantom: comparison of phase-contrast cine-magnetic resonance imaging and the intraluminal Doppler guidewire method. Jpn J Radiol 27, 335–341 (2009). https://doi.org/10.1007/s11604-009-0349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-009-0349-9

Key words

Navigation