Skip to main content
Log in

Spatio-temporal analysis of seismic potential in the Himalayas and its nearby region: an insight from seismicity and earthquake susceptibility index

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Himalayan region and its surrounding area are one of the most seismically active zones in the world which have significant economic and societal impact. It governs the seismicity of highly populous countries like India, China, Pakistan, Nepal, Bhutan and Afghanistan which account for more than 40% population of the world. Therefore, the complex interaction between seismic parameters and transient seismic events needs to be thoroughly addressed at the regional scale. This study highlights the spatial distribution of earthquake hazard parameters and the temporal variation in seismicity of the Himalayas and its nearby regions by employing the maximum likelihood approach using historical records as well as instrumentally recorded earthquake data of the years 1900–2021. An empirical relation is developed to convert the body wave magnitude (Mb) and surface wave magnitude (Ms) to moment magnitude (Mw). The seismic parameters, namely maximum regional magnitude (Mmax), b-value, and mean seismicity rate (λ0), are estimated for 13 defined zones. Further, the seismic behaviours of the study area are evaluated through the return periods (RP) of earthquakes and the fractal dimension (Dc) of the individual zone. Considering the temporal variation of seismicity and RP of Mw ≥ 6, a new index , i.e. earthquake susceptibility index (ESI6), is developed to identify the zones which are susceptible to Mw ≥ 6 earthquakes. The zones: Central Himalayas 2 (CH2), Western Himalayas (WH), North of MCT 1 (NMCT1) and South of MCT 2 (SMCT2) are identified to be highly susceptible to earthquakes of Mw ≥ 6. The present analysis will motivate researchers and engineers from government and non-government organizations to collaborate for improved policy making in the seismically active Himalayan region concerning land-use planning, insurance, and catastrophe preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Amitrano D (2012) Variability in the power-law distributions of rupture events. Eur Phys J Spec Top 205(1):199–215

    Article  Google Scholar 

  • Anbazhagan P, Smitha CV, Kumar A (2014) Representative seismic hazard map of Coimbatore, India. Eng Geol 171:81–95

    Article  Google Scholar 

  • Baruah S, Baruah S (2011) Moment magnitude–local magnitude relationship for the earthquakes of Shillong-Mikir plateau of Northeast India region. Mem Geol Surv India 77:141–148

    Google Scholar 

  • Baruah S, Baruah S, Kalita A, Biswas R, Gogoi N, Gautam JL, Kayal JR (2012) Moment magnitude–local magnitude relationship for the earthquakes of the Shillong-Mikir plateau, northeastern India region: a new perspective. Geomat Nat Hazards Risk 3(4):365–375

    Article  Google Scholar 

  • Bayrak Y, Bayrak E (2012) Regional variations and correlations of Gutenberg-Richter parameters and fractal dimension for the different seismogenic zones in Western Anatolia. J Asian Earth Sci 58:98–107

    Article  Google Scholar 

  • Bayrak Y, Öztürk S, Çınar H, Kalafat D, Tsapanos TM, Koravos GC, Leventakis GA (2009) Estimating earthquake hazard parameters from instrumental data for different regions in and around Turkey. Eng Geol 105(3–4):200–210

    Article  Google Scholar 

  • Bilham R, Ambraseys N (2005) Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500–2000. Curr Sci 88:1658–1663

    Google Scholar 

  • Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc London Spec Publ 483(1):423–482

    Article  Google Scholar 

  • Bisht H, Kotlia BS, Kumar K, Dumka RK, Taloor AK, Upadhyay R (2021) GPS derived crustal velocity, tectonic deformation and strain in the Indian Himalayan arc. Quatern Int 575:141–152

    Article  Google Scholar 

  • Castellaro S, Mulargia F, Kagan YY (2006) Regression problems for magnitudes. Geophys J Int 165(3):913–930

    Article  Google Scholar 

  • Chandra U (1978) Seismicity, earthquake mechanisms and tectonics along the Himalayan mountain range and vicinity. Phys Earth Planet Inter 16(2):109–131

    Article  Google Scholar 

  • Chingtham P, Chopra S, Baskoutas I, Bansal BK (2014) An assessment of seismicity parameters in northwest Himalaya and adjoining regions. Nat Hazards 71(3):1599–1616

    Article  Google Scholar 

  • Chingtham P, Yadav RBS, Chopra S, Yadav AK, Gupta AK, Roy PNS (2016) Time-dependent seismicity analysis in the Northwest Himalaya and its adjoining regions. Nat Hazards 80(3):1783–1800

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Article  Google Scholar 

  • Cred U (2018) Economic losses, poverty & disasters 1998–2017. Université Catholique de Louvain (UCL), Brussels, Belgium, p 33

    Google Scholar 

  • Das R, Meneses C (2021) A unified moment magnitude earthquake catalog for Northeast India. Geomat Nat Haz Risk 12(1):167–180

    Article  Google Scholar 

  • Das R, Wason HR, Sharma ML (2011) Global regression relations for conversion of surface wave and body wave magnitudes to moment magnitude. Nat Hazards 59(2):801–810. https://doi.org/10.1007/s11069-011-9796-6

    Article  Google Scholar 

  • Das R, Wason HR, Sharma ML (2014) Unbiased estimation of moment magnitude from body-and surface-wave magnitudes. Bull Seismol Soc Am 104(4):1802–1811

    Article  Google Scholar 

  • Das R, Gonzalez G, de la Llera JC, Saez E, Salazar P, Gonzalez J, Meneses C (2020) A probabilistic seismic hazard assessment of southern Peru and Northern Chile. Eng Geol 271:105585

    Article  Google Scholar 

  • Dasgupta S, Mukhopadhyay B, Mukhopadhyay M, Pande P (2021) Geo-and seismo-tectonics of Eastern Himalaya: exploring earthquake source zones from foredeep to Tibetan hinterland. Phys Chem Earth Parts a/b/c 123:103013

    Article  Google Scholar 

  • De la Torre TL, Monsalve G, Sheehan AF, Sapkota S, Wu F (2007) Earthquake processes of the Himalayan collision zone in eastern Nepal and the southern Tibetan Plateau. Geophys J Int 171(2):718–738

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Article  Google Scholar 

  • Goitom B, Werner MJ, Goda K, Kendall JM, Hammond JO, Ogubazghi G, Illsley-Kemp F (2017) Probabilistic seismic-hazard assessment for eritrea. Bull Seismol Soc Am 107(3):1478–1494

    Article  Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D: Nonlinear Phenomena 9:189–208

    Article  Google Scholar 

  • Gupta ID (2006) Delineation of probable seismic sources in India and neighbourhood by a comprehensive analysis of seismotectonic characteristics of the region. Soil Dyn Earthq Eng 26(8):766–790

    Article  Google Scholar 

  • Gupta H, Gahalaut VK (2014) Seismotectonics and large earthquake generation in the Himalayan region. Gondwana Res 25(1):204–213

    Article  Google Scholar 

  • Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188

    Article  Google Scholar 

  • Hamdache M, Peláez JA, Kijko A, Smit A (2017) Energetic and spatial characterization of seismicity in the Algeria-Morocco region. Nat Hazards 86(2):273–293

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res Solid Earth 84(B5):2348–2350

    Article  Google Scholar 

  • Herrmann M, Piegari E, Marzocchi W (2022) Revealing the spatiotemporal complexity of the magnitude distribution and b-value during an earthquake sequence. Nat Commun 13(1):1–10

    Article  Google Scholar 

  • Ismail-Zadeh A, Soloviev A (2022) Numerical modelling of lithospheric block-and-fault dynamics: what did we learn about large earthquake occurrences and their frequency? Surv Geophys 43:1–26

    Article  Google Scholar 

  • Iyengar RN, Chadha RK, Balaji Rao K, Raghukanth STG (2010) Development of probabilistic seismic hazard map of India. Report on the National Disaster Management Authority, Government of India, India

  • Jade S, Shrungeshwara TS, Kumar K, Choudhury P, Dumka RK, Bhu H (2017) India plate angular velocity and contemporary deformation rates from continuous GPS measurements from 1996 to 2015. Sci Rep 7(1):1–16

    Article  CAS  Google Scholar 

  • Kagan YY (2003) Accuracy of modern global earthquake catalogs. Phys Earth Planet Inter 135(2–3):173–209

    Article  Google Scholar 

  • Karim N (2007) Hazard mitigation in South and Southeast Asia. International perspectives on natural disasters: occurrence, mitigation, and consequences. Springer, Dordrecht, pp 211–230

    Chapter  Google Scholar 

  • Kayabali K (2002) Modeling of seismic hazard for Turkey using the recent neotectonic data. Eng Geol 63(3–4):221–232

    Article  Google Scholar 

  • Kayal JR (2001) Microearthquake activity in some parts of the Himalaya and the tectonic model. Tectonophysics 339(3–4):331–351

    Article  Google Scholar 

  • Kayal JR (2010) Himalayan tectonic model and the great earthquakes: an appraisal. Geomat Nat Haz Risk 1(1):51–67

    Article  Google Scholar 

  • Kijko A (2004) Estimation of the maximum earthquake magnitude, m max. Pure Appl Geophys 161(8):1655–1681

    Article  Google Scholar 

  • Kijko A, Sellevoll MA (1992) Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull Seismol Soc Am 82(1):120–134

    Google Scholar 

  • Kijko A, Smit A, Sellevoll MA (2016) Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bull Seismol Soc Am 106(3):1210–1222

    Article  Google Scholar 

  • Kolathayar S, Sitharam TG, Vipin KS (2012) Spatial variation of seismicity parameters across India and adjoining areas. Nat Hazards 60(3):1365–1379

    Article  Google Scholar 

  • Kumar S, Sengupta A, Hermanns R, Dehls J, Bhasin RK, Penna I, Gupta V (2022) Probabilistic seismic hazard analysis (PSHA) to estimate the input ground motions for Co-seismic landslide hazard assessment: a case study on Himalayan highways, Sikkim India. Phys Chem Earth Parts A/B/C 127:103157

    Article  Google Scholar 

  • Leptokaropoulos K, Karakostas V, Papadimitriou E, Adamaki AK, Tan O, İnan S (2013) A homogeneous earthquake catalog for Western Turkey and magnitude of completeness determination. Bull Seismol Soc Am 103(5):2739–2751

    Article  Google Scholar 

  • Liu J, Wang Z, Xie F, Lv Y (2013) Seismic hazard assessment for greater North China from historical intensity observations. Eng Geol 164:117–130

    Article  Google Scholar 

  • Mahajan AK, Thakur VC, Sharma ML, Chauhan M (2010) Probabilistic seismic hazard map of NW Himalaya and its adjoining area. India Nat Hazards 53(3):443–457

    Article  Google Scholar 

  • McGuire RK (1976) FORTRAN computer program for seismic risk analysis (No. 76–67). US Geological Survey,

  • Mignan A, Woessner J (2012) Estimating the magnitude of completeness for earthquake catalogs. Community Online Resour Stat Seismicity Anal 1–45

  • Mogi K (1962) Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena. Bulletin of the Earthquake Research Institute, University of Tokyo, Tokyo, Japan, pp 125–173

    Google Scholar 

  • Mohanty WK, Walling MY (2008) Seismic hazard in mega city Kolkata. India Natural Hazards 47(1):39–54

    Article  Google Scholar 

  • Molchan GM, Dmitrieva OE (1992) Aftershock identification: methods and new approaches. Geophys J Int 109(3):501–516

    Article  Google Scholar 

  • Mukhopadhyay B, Acharyya A, Bhattacharyya D, Dasgupta S, Pande P (2011) Seismotectonics at the terminal ends of the Himalayan Arc. Geomat Nat Haz Risk 2(2):159–181

    Article  Google Scholar 

  • Nath SK, Mandal S, Das Adhikari M, Maiti SK (2017) A unified earthquake catalogue for South Asia covering the period 1900–2014. Nat Hazards 85(3):1787–1810

    Article  Google Scholar 

  • Nayak M, Sitharam TG (2019) Estimation and spatial mapping of seismicity parameters in western Himalaya, central Himalaya and Indo-Gangetic plain. J Earth Syst Sci 128(3):1–13

    Article  Google Scholar 

  • NDMA (2011) Development of probabilistic seismic hazard map of India.

  • Öztürk S (2011) Characteristics of seismic activity in the Western, Central and Eastern parts of the North Anatolian Fault Zone, Turkey: temporal and spatial analysis. Acta Geophys 59:209–238

    Article  Google Scholar 

  • Pandey AK, Chingtham P, Roy PNS (2017) Homogeneous earthquake catalogue for Northeast region of India using robust statistical approaches. Geomatics Nat Hazards Risk 8(2):1477–1491

    Article  Google Scholar 

  • Polat G (2022) Spatial analysis of b-value variability in Elazig city and the surrounding area (Eastern Turkey). Acta Geophys 70(1):15–25

    Article  Google Scholar 

  • Prasath RA, Bansal BK, Verma M (2022) Stress distribution in the western India-Eurasia collision zone, its kinematics and seismotectonic implications. J Asian Earth Sci 230:105208

    Article  Google Scholar 

  • Priestley K, Jackson J, McKenzie D (2008) Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys J Int 172(1):345–362

    Article  Google Scholar 

  • Priyanka RS, Jayangondaperumal R, Pandey A, Mishra RL, Singh I, Bhushan R, Bhat GR (2017) Primary surface rupture of the 1950 Tibet-Assam great earthquake along the eastern Himalayan front India. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Raghukanth STG (2010) Estimation of seismicity parameters for India. Seismol Res Lett 81(2):207–217

    Article  Google Scholar 

  • Rajendran K, Parameswaran RM, Rajendran CP (2017) Seismotectonic perspectives on the Himalayan arc and contiguous areas: inferences from past and recent earthquakes. Earth Sci Rev 173:1–30

    Article  Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity, 1969–1982. J Geophys Res: Solid Earth 90(B7):5479–5495

    Article  Google Scholar 

  • Ristau J (2009) Comparison of magnitude estimates for New Zealand earthquakes: moment magnitude, local magnitude, and teleseismic body-wave magnitude. Bull Seismol Soc Am 99(3):1841–1852

    Article  Google Scholar 

  • Roy PNS, Mondal SK (2009) Fractal nature of earthquake occurrence in northwest Himalayan region. J Indian Geophys Union 13(2):63–68

    Google Scholar 

  • Sandhu M, Yadav RBS, Kumar R, Baruah S, Singh AP, Mishra M, Yadav JS (2022) Spatial variability of earthquake hazard parameters, return periods and probabilities of earthquake occurrences in the eastern Himalayan seismic belt. Phys Chem Earth Parts A/B/C 127:103194

    Article  Google Scholar 

  • Sawires R, Peláez JA, Santoyo MA (2022) Probabilistic seismic hazard assessment for Western Mexico. Eng Geol 313:106959

    Article  Google Scholar 

  • Schorlemmer D, Wiemer S, Wyss M (2005) Variations in earthquake-size distribution across different stress regimes. Nature 437(7058):539–542

    Article  CAS  Google Scholar 

  • Scordilis EM (2006) Empirical global relations converting MS and mb to moment magnitude. J Seismolog 10(2):225–236

    Article  Google Scholar 

  • Shanker D, Sharma ML (1998) Estimation of seismic hazard parameters for the Himalayas and its vicinity from complete data files. Pure Appl Geophys 152(2):267–279

    Article  Google Scholar 

  • Sharma ML, Malik S (2006) Probabilistic seismic hazard analysis and estimation of spectral strong ground motion on bed rock in north east India. In: 4th international conference on earthquake engineering pp 12–13

  • Singh AP, Roy IG, Kumar S, Kayal JR (2015) Seismic source characteristics in Kachchh and Saurashtra regions of Western India: b-value and fractal dimension mapping of aftershock sequences. Nat Hazards 77(1):33–49

    Article  Google Scholar 

  • Stepp J (1972) Analysis of completeness of the earthquake sample in the Puget sound area and its effect on statistical estimates of earthquake hazard. In: Proceedings of the 1st international conference on microzonazion, Seattle, Vol 2, pp 897–910

  • Stevens VL, Avouac JP (2015) Interseismic coupling on the main Himalayan thrust. Geophys Res Lett 42(14):5828–5837

    Article  Google Scholar 

  • Szeliga W, Hough S, Martin S, Bilham R (2010) Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull Seismol Soc Am 100(2):570–584

    Article  Google Scholar 

  • Taroni M, Akinci A (2021) Good practices in PSHA: declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy. Geophys J Int 224(2):1174–1187

    Article  Google Scholar 

  • Thingbaijam KKS, Nath SK, Yadav A, Raj A, Walling MY, Mohanty WK (2008) Recent seismicity in Northeast India and its adjoining region. J Seismolog 12(1):107–123

    Article  Google Scholar 

  • Tiwari RK, Paudyal H (2022) Gorkha earthquake (MW7. 8) and aftershock sequence: a fractal approach. Earthq Sci 35(3):193–204

    Article  Google Scholar 

  • Tiwari A, Paul A, Singh R, Upadhyay R (2021) Potential seismogenic asperities in the Garhwal-Kumaun region, NW Himalaya: seismotectonic implications. Nat Hazards 107:73–95

    Article  Google Scholar 

  • Tsampas AD, Scordilis EM, Papazachos CB, Karakaisis GF (2016) Global-magnitude scaling relations for intermediate-depth and deep-focus earthquakes. Bull Seismol Soc Am 106(2):418–434

    Article  Google Scholar 

  • Turcotte DL (1997) Fractals and chaos in geology and geophysics Cambridge University. Press, New York

    Book  Google Scholar 

  • Turner B, Jenkins J, Turner R, Parker A, Sinclair A, Davies S, Benz HM (2013) Seismicity of the Earth 1900–2010 Himalaya and vicinity (No. 2010–1083-J). US Geological Survey.

  • Utsu T (1961) A statistical study on the occurrence of aftershocks. Geophys Mag 30:521–605

    Google Scholar 

  • Utsu T (2002) Relationships between magnitude scales. In: Lee WHK, Jennings P, Kisslinger C, Kanamori H (eds) International handbook of earthquake and engineering seismology, Part A. Elsevier Science, Netherlands, pp 733–746

    Chapter  Google Scholar 

  • van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering. Commun Online Res Stat Seism Anal 10(1):1–25

    Google Scholar 

  • Verma RK (1991) Seismicity of the Himalaya and the northeast India, and nature of continent-continent collision. Phys Chem Earth 18:345–370

    Article  Google Scholar 

  • Vernant P, Bilham R, Szeliga W, Drupka D, Kalita S, Bhattacharyya AK, Berthet T (2014) Clockwise rotation of the Brahmaputra Valley relative to India: tectonic convergence in the eastern Himalaya, Naga Hills, and Shillong Plateau. J Geophys Res Solid Earth 119(8):6558–6571

    Article  Google Scholar 

  • Weatherill GA, Pagani M, Garcia J (2016) Exploring earthquake databases for the creation of magnitude-homogeneous catalogues: tools for application on a regional and global scale. Geophys J Int 206(3):1652–1676

    Article  Google Scholar 

  • Weichert DH (1980) Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes. Bull Seismol Soc Am 70(4):1337–1346

    Article  Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72(3):373–382

    Article  Google Scholar 

  • Wiemer S, Katsumata K (1999) Spatial variability of seismicity parameters in aftershock zones. J Geophys Res Solid Earth 104(B6):13135–13151

    Article  Google Scholar 

  • Wiemer S, Wyss M (2000) Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull Seismol Soc Am 90(4):859–869

    Article  Google Scholar 

  • Wyss M, Gupta S, Rosset P (2018) Casualty estimates in repeat Himalayan earthquakes in India. Bull Seismol Soc Am 108(5A):2877–2893

    Article  Google Scholar 

  • Yadav RBS, Bormann P, Rastogi BK, Das MC, Chopra S (2009) A homogeneous and complete earthquake catalog for northeast India and the adjoining region. Seismol Res Lett 80(4):609–627

    Article  Google Scholar 

  • Yadav RBS, Bayrak Y, Tripathi JN, Chopra S, Singh AP, Bayrak E (2012) A probabilistic assessment of earthquake hazard parameters in NW Himalaya and the adjoining regions. Pure Appl Geophys 169(9):1619–1639

    Article  Google Scholar 

  • Yadav RBS, Tsapanos TM, Burton PW, Kumar R, Sandhu M (2022) Seismicity and magnitude recurrence hazard assessment in Eastern Nepal, Northeast India and Tibet Himalaya. Phys Chem Earth Parts A/B/C 127:103158

    Article  Google Scholar 

  • Yazdani A, Kowsari M (2017) A probabilistic procedure for scenario-based seismic hazard maps of Greater Tehran. Eng Geol 218:162–172

    Article  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the Ministry of Human Resources Development (MHRD), Government of India, for providing the research fellowship during this study.

Author information

Authors and Affiliations

Authors

Contributions

SK contributed to the conceptualization, writing—original draft, methodology, and formal analysis. AS was involved in writing—review and editing and supervision.

Corresponding author

Correspondence to Saurav Kumar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Edited by Prof. Ramón Zúńiga (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Sengupta, A. Spatio-temporal analysis of seismic potential in the Himalayas and its nearby region: an insight from seismicity and earthquake susceptibility index. Acta Geophys. 72, 1483–1507 (2024). https://doi.org/10.1007/s11600-023-01210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01210-5

Keywords

Navigation