Skip to main content
Log in

Kinematics of crustal deformation along the central Himalaya

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Utilizing an updated dataset of 145 GNSS surface velocities, this study examines the fault slip rate and fault geometry along the Main Himalayan Thrust (MHT) in the central Himalaya. Employing a Bayesian inversion model, the present analysis reveals that the upper portion of the MHT ramp exhibits full locking, while the lower flat displays creeping motion. The estimated locking depth and fault depth of MFT range from 4.3 ± 2.6 km to 9.7 ± 2.2 km and 13.5 ± 3.1 km to 15.8 ± 1.9 km, respectively, along the central Himalaya. Further, the slip rate along the transition zone lies in the range of 1.4 ± 0.8 mm/yr to 2.7 ± 0.5 mm/yr. Considering the amount of uncertainties as ~1–2 mm/yr in GNSS velocities, the study suggests that the transition zone along the middle flat of the MHT also exhibits locking behavior. Thus, the estimated locking depth extends to ~15.0 km down-dip and covers a horizontal distance of ~90 km (locking line) on the surface, reaching the foothills of the Higher Himalaya. Furthermore, along the deeper flat of the MHT, the slip rate ranges from 19.4 ± 2.5 mm/yr in the west to 12.8 ± 1.6 mm/yr in the east along Nepal Himalaya. The analysis also calculates the slip deficit rate along the MHT fault plane, revealing values of ~15.1 mm/yr in western Nepal, ~12.7 mm/yr in central Nepal, and ~10.6 mm/yr in eastern Nepal. These slip deficit rates across different segments of central Nepal indicate the potential for large earthquakes in the region. The results are further supported by a resolution test using a checkerboard synthetic model, demonstrating the capability of the GNSS network to capture the slip rate along the MHT. These findings inevitably contribute to a comprehensive assessment of the seismic hazard potential in the central Himalayan region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ader T, Avouac J-P, Liu-Zeng J, Lyon-Caen H, Bollinger L, Galetzka J, Genrich J, Thomas M, Chanard K, Sapkota SN (2012) Convergence rate across the Nepal Himalaya and interseismic coupling on the main Himalayan thrust implications for seismic hazard. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB009071

    Article  Google Scholar 

  • Altamimi Z, Metivier L, Collilieux X (2012) ITRF2008 plate motion model. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008930

    Article  Google Scholar 

  • Avouac J-P (2003) Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Adv Geophys 46:1–80

    Article  Google Scholar 

  • Bagnardi M, Hooper A (2018) Inversion of surface deformation data for rapid estimates of source parameters and uncertainties: a Bayesian approach. Geochem Geophys Geosyst 19(7):194–2211

    Article  Google Scholar 

  • Bettinelli P, Avouac J-P, Flouzat M, Jouanne F, Bollinger L, Willis P, Chitrakar GR (2006) Plate motion of India and interseismic strain in the Nepal Himalaya from GPS and DORIS measurements. J Geodesy 80:567–589

    Article  Google Scholar 

  • Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc, Lond, Spec Pub 483:416–483

    Article  Google Scholar 

  • Bilham R, Ambraseys N (2005) Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes. Curr Sci 1500–2000:1658–1663

    Google Scholar 

  • Bilham R, Larson K, Freymueller J (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386:61

    Article  CAS  Google Scholar 

  • Bilham R, Mencin D, Bendick R, Burgmann R (2017) Implications for elastic energy storage in the Himalaya from the Gorkha 2015 earthquake and other incomplete ruptures of the main Himalayan thrust. Quatern Int 462(1):3–21

    Article  Google Scholar 

  • Bilham R, Blume F, Bendick R, Gaur VK (1998) Geodetic constraints on the translation and deformation of India: implications for future great Himalayan earthquakes. Indian Acad Sci, Curr Sci 74:213–229

    Google Scholar 

  • Bollinger L, Sapkota SN, Tapponnier P, Klinger Y, Rizza M, Van Der Woerd J, Tiwari DR, Pandey R, Bitri A, de Berc S (2014) Estimating the return times of great Himalayan earthquakes in eastern Nepal: evidence from the Patu and Bardibas strands of the main Frontal thrust. J Geophys Res Solid Earth 119(9):7123–7163

    Article  Google Scholar 

  • Burgmann R, Larson K, Bilham R (1999) Model inversion of GPS and leveling measurements across the Himalaya: implications for earthquake hazards and future geodetic networks. Himal Geol 20:59–72

    Google Scholar 

  • Burgmann R, Kogan MG, Steblov GM, Hilley G, Levin VE, Apel E (2005) Interseismic coupling and asperity distribution along the Kamchatka subduction zone. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB003648

    Article  Google Scholar 

  • Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res Solid Earth 105(B6):13389–13407

    Article  Google Scholar 

  • Chen Q, Freymueller JT, Yang Z, Xu C, Jiang W, Wang Q, Liu J (2004) Spatially variable extension in southern Tibet based on GPS measurements. J Geophys Res Solid Earth. https://doi.org/10.1029/2002JB002350

    Article  Google Scholar 

  • Chuang RY, Johnson KM (2011) Reconciling geologic and geodetic model fault slip-rate discrepancies in Southern California: consideration of nonsteady mantle flow and lower crustal fault creep. Geology 39(7):627–630

    Article  Google Scholar 

  • Dal Zilio L, Jolivet R, van Dinther Y (2020) Segmentation of the main Himalayan thrust illuminated by Bayesian inference of interseismic coupling. Geophys Res Lett 47(4):e2019GL086424

    Article  Google Scholar 

  • DeCelles PG, Robinson DM, Quade J, Ojha TP, Garzione CN, Copeland P, Upreti BN (2001) Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20(4):487–509

    Article  Google Scholar 

  • Dey S, Kaushal RK, Jain V (2019) Spatiotemporal variability of neotectonic activity along the Southern Himalayan front: a geomorphic perspective. J Geodyn 129:237–246

    Article  Google Scholar 

  • Diao F, Wang R, Zhu Y, Xiong X (2022) Revisiting the fault locking of the central Himalayan thrust with a viscoelastic earthquake-cycle deformation model. Seismol Soc Am 93(1):193–200

    Google Scholar 

  • Fukuda J, Johnson KM (2008) A fully Bayesian inversion for spatial distribution of fault slip with objective smoothing. Bull Seismol Soc Am 98(3):1128–1146

    Article  Google Scholar 

  • Herring TA, King RW, McCluskey SC (2015) Introduction to GAMIT/GLOBK, release 10.4. Massachusetts Institute of Technology, Cambridge

  • Hossler T, Bollinger L, Sapkota SN, Lave J, Gupta RM, Kandel TP (2016) Surface ruptures of large Himalayan earthquakes in Western Nepal: evidence along a reactivated strand of the main boundary thrust. Earth Planet Sci Lett 434:187–196

    Article  CAS  Google Scholar 

  • Hu W-L (2022) How do differences in interpreting seismic images affect estimates of geological slip rates? Solid Earth 13(8):1281–1290

    Article  Google Scholar 

  • Hu W-L, Stevens VL (2022) Duplex kinematics reduces both frontal advance and seismic moment deficit in the Himalaya. Geology 50(10):1161–1165

    Article  Google Scholar 

  • Hubbard J, Almeida R, Foster A, Sapkota SN, Burgi P, Tapponnier P (2016) Structural segmentation controlled the 2015 Mw 7.8 Gorkha earthquake rupture in Nepal. Geology 44(8):639–642

    Article  Google Scholar 

  • Johnson KM, Segall P, Yu SB (2005) A viscoelastic earthquake cycle model for Taiwan. J Geophys Res Solid Earth. https://doi.org/10.1029/2004JB003516

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Pandey MR, Gamond JF, Le Fort P, Serrurier L, Vigny C, Avouac JP (1999) Oblique convergence in the Himalayas of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 26:1933–1936

    Article  Google Scholar 

  • Jouanne F, Mugnier JL, Sapkota SN, Bascou P, Pecher A (2017) Estimation of coupling along the main Himalayan thrust in the central Himalaya. J Asian Earth Sci 133:62–71

    Article  Google Scholar 

  • Kumar P, Yuan X, Kind R, Ni J (2006) Imaging the colliding Indian and Asian lithospheric plates beneath Tibet. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB003930

    Article  Google Scholar 

  • Larson KM, Burgmann R, Bilham R, Freymueller JT (1999) Kinematics of the India-Eurasia collision zone from GPS measurements. J Geophys Res Solid Earth 104:1077–1093

    Article  Google Scholar 

  • Lave J, Avouac J-P (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res Solid Earth 105(B3):5735–5770

    Article  Google Scholar 

  • Lave J, Avouac J-P (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophys Res Solid Earth 106(B11):26561–26591

    Article  Google Scholar 

  • Li S, Moreno M, Bedford J, Rosenau M, Oncken O (2015) Revisiting viscoelastic effects on interseismic deformation and locking degree: A case study of the Peru-North Chile subduction zone. J Geophys Res Solid Earth 120(6):4522–4538

    Article  Google Scholar 

  • Li Y, Song X, Shan X, Qu C, Wang Z (2016) Locking degree and slip rate deficit distribution on MHT fault before 2015 Nepal Mw 7.9 earthquake. J Asian Earth Sci 119:78–86

    Article  Google Scholar 

  • Li S, Wang Q, Yang S, Qiao X, Nie Z, Zou R, Ding K, He P, Chen G (2018) Geodetic imaging mega-thrust coupling beneath the Himalaya. Tectonophysics 747:225–238

    Article  Google Scholar 

  • Li S, Wang Q, Chen G, He P, Ding K, Chen Y, Zou R (2019) Interseismic coupling in the Central Nepalese Himalaya: spatial correlation with the 2015 Mw 7.9 Gorkha earthquake. Pure Appl Geophys 176:3893–3911

    Article  Google Scholar 

  • Lindsey EO, Almeida R, Mallick R, Hubbard J, Bradley K, Tsang LLH, Liu Y, Burgmann R, Hill EM (2018) Structural control on downdip locking extent of the Himalayan megathrust. J Geophys Res Solid Earth 123:5265–5278

    Article  Google Scholar 

  • Mugnier J-L, Gajurel A, Huyghe P, Jayangondaperumal R, Jouanne F, Upreti B (2013) Structural interpretation of the great earthquakes of the last millennium in the central Himalaya. Earth Sci Rev 127:30–47

    Article  Google Scholar 

  • Mugnier J-L, Huyghe P, Leturmy P, Jouanne F (2004) Episodicity and rates of thrust-sheet motion in the Himalayas (western Nepal), pp 91–114

  • Murphy MA, Taylor MH, Gosse J, Silver CRP, Whipp DM, Beaumont C (2014) Limit of strain partitioning in the Himalaya marked by large earthquakes in western Nepal. Nat Geosci 7(1):38–42

    Article  CAS  Google Scholar 

  • Nicol A, Wallace LM (2007) Temporal stability of deformation rates: comparison of geological and geodetic observations Hikurangi Subduction Margin, New Zealand. Earth Planet Sci Lett 258(3–4):397–413

    Article  CAS  Google Scholar 

  • Pandey MR, Tandukar RP, Avouac JP, Lave J, Massot JP (1995) Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett 22(7):751–754

    Article  Google Scholar 

  • Pasari S, Sharma Y, Neha (2021) Quantifying the current state of earthquake hazards in Nepal. Appl Comput Geosci 10:100058

    Article  Google Scholar 

  • Robinson DM (2008) Forward modeling the kinematic sequence of the central Himalayan thrust belt, western Nepal Himalayan thrust belt, western Nepal. Geosphere 4(5):785–801

    Article  Google Scholar 

  • Sapkota SN, Bollinger L, Klinger Y, Tapponnier P, Gaudemer Y, Tiwari D (2013) Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat Geosci 6(1):71

    Article  CAS  Google Scholar 

  • Sharma Y, Pasari S, Ching KE, Dikshit O, Kato T, Malik JN, Chang CP, Yen JY (2020) Spatial distribution of earthquake potential along the Himalayan arc. Tectonophysics 791:228556

    Article  Google Scholar 

  • Sreejith KM, Sunil PS, Agrawal R, Saji AP, Rajawat AS, Ramesh DS (2018) Audit of stored strain energy and extent of future earthquake rupture in central Himalaya. Sci Rep 8(1):1–9

    Article  CAS  Google Scholar 

  • Stevens VL, Avouac JP (2015) Interseismic coupling on the main Himalayan thrust. Geophys Res Lett 42:5828–5837

    Article  Google Scholar 

  • Stevens VL, Avouac J-P (2016) Millenary Mw>9.0 earthquakes required by geodetic strain in the Himalaya. Geophys Res Lett 43:1118–1123

    Article  Google Scholar 

  • Verma H, Sharma Y, Pasari S (2022) Synthetic aperture radar interferometry to measure earthquake-related deformation: a case study from Nepal. In: Disaster management in the complex Himalayan terrains: natural hazard management, methodologies and policy implications. Springer, pp 133–140

    Chapter  Google Scholar 

  • Wallace K, Bilham R, Blume F, Gaur VK, Gahalaut V (2005) Surface deformation in the region of the 1905 Kangra Mw=7.8 earthquake in the period 1846–2001. Geophys Res Lett. https://doi.org/10.1029/2005GL022906

    Article  Google Scholar 

  • Wang M, Shen Z-K (2020) Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J Geophys Res Solid Earth 125(2):e2019JB018774

    Article  Google Scholar 

  • Wesnousky SG (2020) Great pending Himalaya earthquakes. Seismol Res Lett 91(6):3334–3342

    Article  Google Scholar 

  • Wesnousky SG, Kumahara Y, Chamlagain D, Pierce IK, Karki A, Gautam D (2017) Geological observations on large earthquakes along the Himalayan frontal fault near Kathmandu Nepal. Earth Planet Sci Lett 457:366–375

    Article  CAS  Google Scholar 

  • Wobus C, Heimsath A, Whipple K, Hodges K (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature 434(7036):1008–1011

    Article  CAS  Google Scholar 

  • Zhao B, Burgmann R, Wang D, Tan K, Du R, Zhang R (2017) Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7. 9 Gorkha Nepal, Earthquake. J Geophys Res Solid Earth 122(10):8376–8401

    Article  Google Scholar 

  • Zheng G, Wang H, Wright TJ, Lou Y, Zhang R, Zhang W, Shi C, Huang J, Wei N (2017) Crustal deformation in the India-Eurasia collision zone from 25 years of GPS measurements. J Geophys Res Solid Earth 122:9290–9312

Download references

Acknowledgements

We are thankful to Integrated Research on Disaster Risk, International Center of Excellence (IRDR ICoE-Taipei), Taipei and International Science Council Regional Office for Asia and Pacific (ISC ROAP) for the financial support through a seed grant for 2018 TC-EHRA. We also acknowledge the financial support from DST-SERB through a project under MATRICS scheme (File No: MTR/2021/000458). GMT software was used to prepare some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumanta Pasari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Edited by Dr. Salvatore Gambino (ASSOCIATE EDITOR) / Prof. Ramón Zuñiga (CO-EDITOR-IN-CHIEF).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 2 KB)

Supplementary file2 (PDF 59724 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, Y., Pasari, S., Ching, KE. et al. Kinematics of crustal deformation along the central Himalaya. Acta Geophys. 72, 553–564 (2024). https://doi.org/10.1007/s11600-023-01175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01175-5

Keywords

Navigation