Skip to main content
Log in

Groundwater spring potential prediction using a deep-learning algorithm

  • Research Article - Hydrology
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Information about water resources is crucial for sustainable development, and this issue is considered to be one of the most important concerns worldwide due to rapid industrialization and population growth. Countries in the semiarid region of the western Asia, like Iran, are dependent on groundwater resources so access to these resources is vital. This study maps surface spring potential on the Nourabad–Koohdasht Plain of Iran using a deep-learning algorithm called convolutional neural network (CNN), and the result was compared to predictions made with five advanced data-mining models: logistic model tree (LMT), LMT hybridized with bagging (BA-LMT), LMT hybridized with dagging (DA-LMT), LMT hybridized with random subspace (RS-LMT), and LMT hybridized with AdaBoost (AB-LMT). Frequency ratio was used to assess the strengths of relationships of each subclass layer to groundwater presence and evidential belief function revealed their effects on model uncertainty. The locations of 2463 springs were determined and showed that the northern part of the plain has the highest groundwater potential based on the density of springs. The data representing each of the spring locations were used for prediction modeling. Receiver operating characteristic (ROC) and area under the ROC curve (AUC) were used to evaluate the strengths of the predictions produced by the models. The results show that CNN (AUC = 0.885) provided the best prediction of spring locations. AB-LMT (AUC = 0.877) was second best, and BA-LMT (AUC = 0.876), DA-LMT (AUC = 0.856), RS-LMT (AUC = 0.846), and the standalone LMT model (AUC = 0.827) followed in rank. It can be concluded that the hybrid LMT models increased the predictive strength of the standalone LMT model when used to predict spring locations. These hybrid modeling methods may be used to improve sustainable groundwater management in the study region and in other regions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be provided under formal request from the corresponding author.

References

  • Abedini M, Ghasemian B, Shirzadi A, Bui DT (2019) A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environ Earth Sci 78(18):1–15. https://doi.org/10.1007/s12665-019-8562-z

    Article  CAS  Google Scholar 

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9(1):93–106

    Article  Google Scholar 

  • Althuwaynee OF et al (2014) A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. CATENA 114:21–36

    Article  Google Scholar 

  • Assadollahi S et al (2009) From lateral flow devices to a novel nano-color microfluidic assay. Sensors 9(8):6084–6100

    Article  CAS  Google Scholar 

  • Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65(1–2):15–31

    Article  Google Scholar 

  • Baghdadi NA, Malki A, Abdelaliem SF, Balaha HM, Badawy M, Elhosseini M (2022) An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning-based convolutional neural network. Comput Biol Med 144:105383. https://doi.org/10.1016/j.compbiomed.2022.105383

    Article  CAS  Google Scholar 

  • Bai B, Bai F, Sun S (2022) Adsorption mechanism of shell powders on heavy metal ions Pb2+/Cd2+ and the purification efficiency for contaminated soils. Front Earth Sci. https://doi.org/10.3389/feart.2022.1071228

    Article  Google Scholar 

  • Balamurugan G, Seshan K, Bera S (2016) Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. J King Saud Univ Sci. https://doi.org/10.1016/j.jksus.2016.08.003

    Article  Google Scholar 

  • Bragagnolo L, Rezende LR, da Silva RV, Grzybowski JMV (2021) Convolutional neural networks applied to semantic segmentation of landslide scars. CATENA 201:105189

    Article  Google Scholar 

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140. https://doi.org/10.1007/BF00058655

    Article  Google Scholar 

  • Chapi K et al (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245

    Article  Google Scholar 

  • Chen W, Panahi M, Khosravi K, Pourghasemi HR, Rezaie F (2018a) Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J Hydrol 572:435–448

    Article  Google Scholar 

  • Chen W et al (2018b) Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression. Appl Sci 8(12):2540

    Article  Google Scholar 

  • Chen P, Pei J, Lu W, Li M (2022) A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance. Neurocomputing (amsterdam) 497:64–75. https://doi.org/10.1016/j.neucom.2022.05.006

    Article  Google Scholar 

  • Choudhury SD, Yu JG, Samal A (2018) Leaf recognition using contour unwrapping and apex alignment with tuned random subspace method. Biosyst Eng 170:72–84. https://doi.org/10.1016/j.biosystemseng.2018.04.001

    Article  Google Scholar 

  • Dai J, Feng H, Shi K, Ma X, Yan Y, Ye L, Xia Y (2022) Electrochemical degradation of antibiotic enoxacin using a novel PbO2 electrode with a graphene nanoplatelets inter-layer: characteristics, efficiency and mechanism. Chemosphere 307:135833. https://doi.org/10.1016/j.chemosphere.2022.135833

    Article  CAS  Google Scholar 

  • Datta S, Pihur V, Datta S (2010) An adaptive optimal ensemble classifier via bagging and rank aggregation with applications to high dimensional data. BMC Bioinform 11:427. https://doi.org/10.1186/1471-2105-11-427

    Article  Google Scholar 

  • Diaz-Alcaide S, Martinez-Santos P (2019) Review: advances in groundwater potential mapping. Hydrogeol J. https://doi.org/10.1007/s10040-019-02001-3

    Article  Google Scholar 

  • Dou J et al (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78(3):1749–1776

    Article  Google Scholar 

  • Dou J et al (2019a) Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Sci Total Environ 662:332–346

    Article  CAS  Google Scholar 

  • Dou J et al (2019b) Evaluating GIS-based multiple statistical models and data mining for earthquake and rainfall-induced landslide susceptibility using the LiDAR DEM. Remote Sens 11(6):638

    Article  Google Scholar 

  • Dou J et al (2019c) Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Nat Hazards 97:1–31

    Article  Google Scholar 

  • Fortino GF, Zamora JC, Tamayose LE, Hirata NST, Guimarães V (2022) Digital signal analysis based on convolutional neural networks for active target time projection chambers. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. https://doi.org/10.1016/j.nima.2022.166497

    Article  Google Scholar 

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139. https://doi.org/10.1006/jcss.1997.1504

    Article  Google Scholar 

  • Gaber T, Tharwat A, Hassanien AE, Snasel V (2016) Biometric cattle identification approach based on Weber’s Local Descriptor and AdaBoost classifier. Comput Electron Agric 122:55–66. https://doi.org/10.1016/j.compag.2015.12.022

    Article  Google Scholar 

  • Gadekallu TR, Srivastava G, Liyanage M, Iyapparaja M, Chowdhary CL, Koppu S, Maddikunta PKR (2022) Hand gesture recognition based on a Harris Hawks optimized Convolution Neural Network. Comput Electr Eng 100:107836. https://doi.org/10.1016/j.compeleceng.2022.107836

    Article  Google Scholar 

  • Hakim WL, Nur A, Rezaei F, Panahi M, Lee C, Lee S (2022) Convolutional neural network and long short-term memory algorithms for groundwater potential mapping in Anseong, South Korea. J Hydrol: Reg Stud 39:100990

    Google Scholar 

  • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844. https://doi.org/10.1109/34.709601

    Article  Google Scholar 

  • Hu X, Huang C, Mei H, Zhang H (2021) Landslide susceptibility mapping using an ensemble model of Bagging scheme and random subspace-based naïve Bayes tree in Zigui County of the Three Gorges Reservoir Area, China. Bull Eng Geol Environ 80(7):5315–5329. https://doi.org/10.1007/s10064-021-02275-6

    Article  Google Scholar 

  • Huang S, Lyu Y, Sha H, Xiu L (2021) Seismic performance assessment of unsaturated soil slope in different groundwater levels. Landslides 18(8):2813–2833. https://doi.org/10.1007/s10346-021-01674-w

    Article  Google Scholar 

  • Huo W, Li Z, Wang J et al (2019) Multiple hydrological models comparison and an improved Bayesian model averaging approach for ensemble prediction over semi-humid regions. Stoch Environ Res Risk Assess 33:217–238. https://doi.org/10.1007/s00477-018-1600-7

    Article  Google Scholar 

  • Jaafari A et al (2019) Meta optimization of an adaptive neuro-fuzzy inference system with grey wolf optimizer and biogeography-based optimization algorithms for spatial prediction of landslide susceptibility. CATENA 175:430–445

    Article  Google Scholar 

  • Jin J, Zhang X, Liu X, Li Y, Li S (2022) Study on critical slowdown characteristics and early warning model of damage evolution of sandstone under freeze-thaw cycles. Front Earth Sci. https://doi.org/10.3389/feart.2022.1006642

    Article  Google Scholar 

  • Karabulut EM, Ibrikci T (2014) Effective automated prediction of vertebral column pathologies based on logistic model tree with SMOTE preprocessing. J Med Syst 38(5):1–9. https://doi.org/10.1007/s10916-014-0050-0

    Article  Google Scholar 

  • Karimi-Rizvandi S, Goodarzi H, Afkoueieh J, Chung I, Kim S, Linh N (2021) Groundwater-potential mapping using a self-learning Bayesian network model: a comparison among metaheuristic algorithms. Water 2021(13):658. https://doi.org/10.3390/w13050658

    Article  Google Scholar 

  • Khosravi K et al (2016a) A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Nat Hazards 83(2):947–987

    Article  Google Scholar 

  • Khosravi K, Nohani E, Maroufinia E, Pourghasemi HR (2016b) A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi. Nat Hazards 83(2):1–41

    Article  Google Scholar 

  • Khosravi K et al (2018a) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Total Environ 627:744–755

    Article  CAS  Google Scholar 

  • Khosravi K et al (2018b) A comparison study of DRASTIC methods with various objective methods for groundwater vulnerability assessment. Sci Total Environ 642:1032–1049

    Article  CAS  Google Scholar 

  • Khosravi K, Panahi M, Bui DT (2018c) Spatial prediction of groundwater spring potential mapping based on an adaptive neuro-fuzzy inference system and metaheuristic optimization. Hydrol Earth Syst Sci 22(9):4771–4792

    Article  Google Scholar 

  • Khosravi K, Panahi M, Golkarian A, Keestra S, Saco P, Tien Bui D, Lee S (2020) Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J Hydrol 591:125552. https://doi.org/10.1016/j.jhydrol.2020.125552

    Article  Google Scholar 

  • Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59(1):161–205. https://doi.org/10.1007/s10994-005-0466-3

    Article  Google Scholar 

  • Li H, Lee YC, Zhou YC, Sun J (2011) The random subspace binary logit (RSBL) model for bankruptcy prediction. Knowl-Based Syst 24(8):1380–1388. https://doi.org/10.1016/j.knosys.2011.06.015

    Article  Google Scholar 

  • Li Q, Song D, Yuan C, Nie W (2022) An image recognition method for the deformation area of open-pit rock slopes under variable rainfall. Measurement 188:110544. https://doi.org/10.1016/j.measurement.2021.110544

    Article  Google Scholar 

  • Liu J, Wang G (2018) Pharmacovigilance from social media: an improved random subspace method for identifying adverse drug events. Int J Med Inform 117:33–43. https://doi.org/10.1016/j.ijmedinf.2018.06.008

    Article  Google Scholar 

  • Liu Y, Zhang K, Li Z, Liu Z, Wang J, Huang P (2020) A hybrid runoff generation modelling framework based on spatial combination of three runoff generation schemes for semi-humid and semi-arid watersheds. J Hydrol (amsterdam) 590:125440. https://doi.org/10.1016/j.jhydrol.2020.125440

    Article  Google Scholar 

  • Lv Z, Yu Z, Xie S, Alamri A (2022) Deep learning-based smart predictive evaluation for interactive multimedia-enabled smart healthcare. ACM Trans Multim Comput Commun Appl 18:1. https://doi.org/10.1145/3468506

    Article  Google Scholar 

  • Mani VRS, Saravanaselvan A, Arumugam N (2022) Performance comparison of CNN, QNN and BNN deep neural networks for real-time object detection using ZYNQ FPGA node. Microelectron J 119:105319. https://doi.org/10.1016/j.mejo.2021.105319

    Article  Google Scholar 

  • Mert A, Kılıç N, Akan A (2014) Evaluation of bagging ensemble method with time-domain feature extraction for diagnosing of arrhythmia beats. Neural Comput Appl 24(2):317–326. https://doi.org/10.1007/s00521-012-1232-7

    Article  Google Scholar 

  • Naghibi SA et al (2015) Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed. Iran Earth Sci Inform 8(1):171–186

    Article  Google Scholar 

  • Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188(1):44

    Article  Google Scholar 

  • Naghibi SA et al (2017) A comparative assessment of GIS-based data mining models and a novel ensemble model in groundwater well potential mapping. J Hydrol 548:471–483

    Article  Google Scholar 

  • Nampak H, Pradhan B, Manap MA (2014) Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J Hydrol 513:283–300

    Article  Google Scholar 

  • Ngo PT, Panahi M, Khosravi K, Ghorbanzadeh O, Kariminejad N, Cerda A, Lee S (2021) Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran. Geosci Front 12(2):505–519. https://doi.org/10.1016/j.gsf.2020.06.013

    Article  Google Scholar 

  • Nohani E et al (2019) Landslide susceptibility mapping using different GIS-based bivariate models. Water 11(7):1402

    Article  Google Scholar 

  • Oh H-J et al (2011) GIS mapping of regional probabilistic groundwater potential in the area of Pohang City. Korea J Hydrol 399(3–4):158–172

    Article  Google Scholar 

  • Pham BT, Prakash I (2018) Machine learning methods of kernel logistic regression and classification and regression trees for landslide susceptibility assessment at part of Himalayan Area, India. Indian J Sci Technol 11(12):1–10

    Article  Google Scholar 

  • Pham BT, Prakash I (2017a) A novel hybrid intelligent approach of random subspace ensemble and reduced error pruning trees for landslide susceptibility modeling: a case study at Mu Cang Chai District, Yen Bai Province, Viet Nam. In: International conference on geo-spatial technologies and earth resources. Springer

  • Pham BT, Prakash I (2017b) Spatial prediction of rainfall induced shallow landslides using adaptive-network-based fuzzy inference system and particle swarm optimization: a case study at the Uttarakhand Area, India. In: International conference on geo-spatial technologies and earth resources. Springer, Cham

  • Pham BT et al (2017c) Landslide hazard assessment using random subspace fuzzy rules based classifier ensemble and probability analysis of rainfall data: a case study at Mu Cang Chai District, Yen Bai Province (Viet Nam). J Indian Soc Remote Sens 45(4):673–683

    Article  Google Scholar 

  • Pham B et al (2018a) A comparison of support vector machines and Bayesian algorithms for landslide susceptibility modeling. Geocarto Int 34:1–36

    CAS  Google Scholar 

  • Pham BT, TienBui D, Prakash I (2018b) Bagging based support vector machines for spatial prediction of landslides. Environ Earth Sci 77(4):146

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I (2018c) Landslide susceptibility modelling using different advanced decision trees methods. Civil Eng Environ Syst 35(1–4):139–157

    Article  Google Scholar 

  • Pham BT et al (2019a) Development of artificial intelligence models for the prediction of compression coefficient of soil: an application of Monte Carlo sensitivity analysis. Sci Total Environ 679:172–184

    Article  CAS  Google Scholar 

  • Pham BT et al (2019b) Hybrid computational intelligence models for groundwater potential mapping. CATENA 182:104101

    Article  Google Scholar 

  • Pourghasemi HR, Beheshtirad M (2015) Assessment of a data-driven evidential belief function model and GIS for groundwater potential mapping in the Koohrang Watershed, Iran. Geocarto Int 30(6):662–685

    Article  Google Scholar 

  • Pourtaghi ZS, Pourghasemi HR (2014) GIS-based groundwater spring potential assessment and mapping in the Birjand Township, southern Khorasan Province, Iran. Hydrogeol J 22(3):643–662

    Article  Google Scholar 

  • Rezayan A, Rezayan AH (2016) Future studies of water crisis in Iran based on processing scenario. Iran J Ecohydrol 3(1):1–17

    Google Scholar 

  • Richey AS et al (2015) Quantifying renewable groundwater stress with GRACE. Water Resour Res 51(7):5217–5238

    Article  Google Scholar 

  • Shahdad M, Saber B (2022) Drought forecasting using new advanced ensemble-based models of reduced error pruning tree. Acta Geophys. https://doi.org/10.1007/s11600-022-00738-2

    Article  Google Scholar 

  • Shu X, Ding W, Peng Y, Wang Z, Wu J, Li M (2021) Monthly streamflow forecasting using convolutional neural network. Water Resour Manag 35(15):5089–5104. https://doi.org/10.1007/s11269-021-02961-w

    Article  Google Scholar 

  • Siebert S, et al (2013) Update of the digital global map of irrigation areas to version 5. Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany and Food and Agriculture Organization of the United Nations, Rome, Italy

  • Talukdar S, Mallick J, Sarkar SK et al (2022) Novel hybrid models to enhance the efficiency of groundwater potentiality model. Appl Water Sci 12:62. https://doi.org/10.1007/s13201-022-01571-0

    Article  Google Scholar 

  • Termeh SV, Khosravi K, Sartaj M, Keesstra S, Tsai FTC, Dijksma R (2018) Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeol J 27(7):2511–2534

    Article  Google Scholar 

  • Tian Y, Yang Z, Yu X, Jia Z, Rosso M, Dedman S, Wang J (2022) Can we quantify the aquatic environmental plastic load from aquaculture? Water Res 219:118551. https://doi.org/10.1016/j.watres.2022.118551

    Article  CAS  Google Scholar 

  • Tien Bui D et al (2019a) Flood spatial modeling in northern iran using remote sensing and GIS: a comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sens 11(13):1589

    Article  Google Scholar 

  • Tien Bui D, Shirzadi A, Chapi K, Shahabi H, Pradhan B, Pham B, Singh V, Chen W, Khosravi K, Ahmad B, Lee S (2019b) A hybrid computational intelligence approach to groundwater spring potential mapping. Water 11(10):2013. https://doi.org/10.3390/w11102013

    Article  Google Scholar 

  • Ting KM, Witten IH (1997) Stacking bagged and dagged models. (Working paper 97/09). Hamilton, New Zealand: University of Waikato, Department of Computer Science. https://hdl.handle.net/10289/1072

  • Tripathi D, Shukla AK, Reddy BR, Bopche GS, Chandramohan D (2022) Credit scoring models using ensemble learning and classification approaches: a comprehensive survey. Wirel Pers Commun 123:785–812. https://doi.org/10.1007/s11277-021-09158-9

    Article  Google Scholar 

  • Truong XL, Mitamura M, Kono Y, Raghavan V, Yonezawa G, Truong XQ, Lee S (2018) Enhancing prediction performance of landslide susceptibility model using hybrid machine learning approach of bagging ensemble and logistic model tree. Appl Sci 8(7):1046. https://doi.org/10.3390/app8071046

    Article  Google Scholar 

  • Wang G, Zhang Z, Sun J, Yang S, Larson CA (2015) POS-RS: a random subspace method for sentiment classification based on part-of-speech analysis. Inf Process Manag 51(4):458–479. https://doi.org/10.1016/j.ipm.2014.09.004

    Article  Google Scholar 

  • Wang F, Wang Q, Nie F, Yu W, Wang R, Li Z (2020) A forest of trees with principal direction specified oblique split on random subspace. Neurocomputing 379:413–425. https://doi.org/10.1016/j.neucom.2019.10.045

    Article  Google Scholar 

  • Wang G, Zhao B, Lan R, Liu D, Wu B, Li Y, Liu X (2022) Experimental study on failure model of tailing dam overtopping under heavy rainfall. Lithosphere. https://doi.org/10.2113/2022/5922501

    Article  Google Scholar 

  • Wang X, Lyu X (2021) Experimental study on vertical water entry of twin spheres side-by-side. Ocean Eng 221:108508. https://doi.org/10.1016/j.oceaneng.2020.108508

    Article  Google Scholar 

  • Yang M, Wang H, Hu K, Yin G, Wei Z (2022a) IA-Net: an inception–attention-module-based network for classifying underwater images from others. IEEE J Ocean Eng 47(3):704–717. https://doi.org/10.1109/JOE.2021.3126090

    Article  Google Scholar 

  • Yang Z, Yu X, Dedman S, Rosso M, Zhu J, Yang J, Wang J (2022b) UAV remote sensing applications in marine monitoring: knowledge visualization and review. Sci Total Environ 838:155939. https://doi.org/10.1016/j.scitotenv.2022.155939

    Article  CAS  Google Scholar 

  • Yariyan P, Janizadeh S, Van Phong T, Nguyen HD, Costache R, Van Le H, Tiefenbacher JP (2020) Improvement of best first decision trees using bagging and dagging ensembles for flood probability mapping. Water Resour Manag 34(9):3037–3053. https://doi.org/10.1007/s11269-020-02603-7

    Article  Google Scholar 

  • Yilmaz I (2009) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Zhan C, Dai Z, Soltanian MR, de Barros FPJ (2022) Data-worth analysis for heterogeneous subsurface structure identification with a stochastic deep learning framework. Water Resour Res. https://doi.org/10.1029/2022WR033241

    Article  Google Scholar 

  • Zhang K, Ali A, Antonarakis A, Moghaddam M, Saatchi S, Tabatabaeenejad A, Moorcroft P (2019) The sensitivity of north american terrestrial carbon fluxes to spatial and temporal variation in soil moisture: an analysis using radar-derived estimates of root-zone soil moisture. J Geophys Res Biogeosci 124(11):3208–3231. https://doi.org/10.1029/2018JG004589

    Article  CAS  Google Scholar 

  • Zhang L, Huang M, Li M, Lu S, Yuan X, Li J (2021a) Experimental study on evolution of fracture network and permeability characteristics of bituminous coal under repeated mining effect. Nat Resour Res (new York N.y.) 31(1):463–486. https://doi.org/10.1007/s11053-021-09971-w

    Article  Google Scholar 

  • Zhang S, Carranza EJM, Wei H, Xiao K, Yang F, Xiang J, Xu Y (2021b) Data-driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-encoder network and supervised convolutional neural network. Nat Resour Res 30(2):1011–1031. https://doi.org/10.1007/s11053-020-09789-y

    Article  Google Scholar 

  • Zhang X, Ma F, Yin S, Wallace CD, Soltanian MR, Dai Z, Lü X (2021c) Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: a critical review. Appl Energy 303:117603. https://doi.org/10.1016/j.apenergy.2021.117603

    Article  CAS  Google Scholar 

  • Zhao L, Du M, Du W, Guo J, Liao Z, Kang X, Liu Q (2022) Evaluation of the carbon sink capacity of the proposed Kunlun Mountain National Park. Int J Environ Res Public Health 19:16. https://doi.org/10.3390/ijerph19169887

    Article  Google Scholar 

  • Zhou Y, Lu Z, Cheng K (2022) Adaboost-based ensemble of polynomial chaos expansion with adaptive sampling. Comput Methods Appl Mech Eng 388:114238. https://doi.org/10.1016/j.cma.2021.114238

    Article  Google Scholar 

Download references

Acknowledgements

This publication has been supported by the RUDN University Scientific Projects Grant System, Project No 202235-2-000.

Author information

Authors and Affiliations

Authors

Contributions

SKM, AO, EN, SK, TJ, ZA, SH, JT and JH did conceptualization. TJ and EN performed data curation. AO, SKM., EN, TJ, ZA, SH, JH provided methodology. EN, TJ, ZA and JH done software. SKM, AO, SK, EN, TJ, ZA, SH, JH wrote the article. JT and JH reviewed and edited the article.

Corresponding authors

Correspondence to Solmaz Khazaei Moughani or Javad Hatamiafkoueieh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest associated with this research or manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Edited by Dr. Mohammad Valipour (ASSOCIATE EDITOR) / Dr. Michael Nones (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moughani, S.K., Osmani, A., Nohani, E. et al. Groundwater spring potential prediction using a deep-learning algorithm. Acta Geophys. 72, 1033–1054 (2024). https://doi.org/10.1007/s11600-023-01053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01053-0

Keywords

Navigation