Skip to main content
Log in

Recent Euler pole parameters and relative velocities of the Nubia–Eurasia and Nubia–South America plates estimated using GPS technique

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The convergence of the Nubian plate toward Eurasia and the spreading rate between the Nubian and South American plates are currently subjects of scientific debates. In this paper, we improve the estimation of Euler pole parameters and the recent relative velocities of the Nubian plate using Global Positioning System (GPS) velocities. These estimates are based on mathematical models and statistical tests for plate tectonic motion represented on a spherical surface. First, we derive the angular velocity and the precise coordinates of the Euler pole to describe the Nubian plate absolute motion expressed in the ITRF2014 geodetic system. This derivation is obtained by inverting the horizontal velocities of 202 GPS stations well distributed across the Nubian plate. Then, we use the same data to obtain the current relative velocities and parameters of the Euler pole characterizing the Nubia–Eurasia and Nubia–South America relative plate motion. A number of 21 and 29 GPS stations located on tectonically stable domains are used to fix the Eurasian and the South American plates, respectively. The results show Nubia–Eurasia relative velocities ranging from 1 to 7 mm/yr, with a direction of NW to WNW for the northern Nubian plate. The velocity in the southern part of this plate reveals a NNE to N direction. The inversion of these velocities allows the determination of the Euler pole parameters: the coordinates \({P}_{\mathrm{Nub}-\mathrm{Eu}}\left({\lambda }_{\mathrm{Nub}-\mathrm{Eu}}={-23.17}^{^\circ }\pm 0.92892;\, {\varphi }_{\mathrm{Nub}-\mathrm{Eu}}={-5.62}^{^\circ }\pm 0.72322\right)\) and the angular velocity \({\Omega }_{\mathrm{Nub}-\mathrm{Eu}}={0.053}^{^\circ }/Myr\pm 0.00101\). On the other hand, the estimated relative velocity of Nubia–South America is varying in the range of 15–30 mm/yr, with a NE to ENE direction and rotating around the pole \({P}_{\mathrm{Nub}-\mathrm{SA}}\left({\lambda }_{\mathrm{Nub}-\mathrm{SA}}={-44.5263}^{^\circ }\pm 0.57624, {\varphi }_{\mathrm{Nub}-\mathrm{SA}}={66.7484}^{^\circ }\pm 0.16524\right)\) with an angular velocity \(\left({\Omega }_{\mathrm{Nub}-\mathrm{SA}}=0.26689^\circ /M\mathrm{yr}\pm 0.0007\right)\). The obtained research results demonstrate an improved precision compared to the existing studies. Furthermore, the use of the Algerian GPS velocities played a key role in the enhancement of the estimates’ precision, which allows us to better understand and monitor the crustal deformations at the limit of the plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Allmendinger RW, Reilinger R, Loveless J (2007) Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics. https://doi.org/10.1029/2006TC002030

    Article  Google Scholar 

  • Alothman AO, Fernandes RM, Bos MS, Schillak S, Elsaka B (2016) Angular velocity of Arabian plate from multi-year analysis of GNSS data. Arab J Geosci 9(8):1–10

    Article  Google Scholar 

  • Altamimi Z, M’etivier L, Rebischung P, Rouby H, Collilieux X (2017) ITRF2014 plate motion model. J Geophys Res 209:1906–1912

    Google Scholar 

  • Ambraseys NN, Adams RD (1992) Reappraisal of major African earthquakes, south of 20° N, 1900–1930. Tectonophysics 209(1–4):293–296

    Article  Google Scholar 

  • Anzidei M, Baldi P, Casula G, Galvani A et al. (2003) Data analysis of the first epoch GPS Algerian regional network. Bollettino di Geodesia e Scienze Affini-BGSA.

  • Araszkiewicz A, Figurski M, Jarosiński M (2016) Erroneous GNSS strain rate patterns and their application to investigate the tectonic credibility of GNSS velocities. Acta Geophys 64(5):1412–1429

    Article  Google Scholar 

  • Argus DF, Heflin MB (1995) Plate motion and crustal deformation estimated with geodetic data from the global positioning system. Geophys Res Lett 22:1973–1976

    Article  Google Scholar 

  • Argus DF, Gordon RG, Heflin MB, Ma C, Eanes RJ, Willis P, Owen SE (2010) The angular velocities of the plates and the velocity of Earth’s centre from space geodesy. Geophys J Int 180(3):913–960

    Article  Google Scholar 

  • Bastos L, Osório J, Barbeito A, Hein G (1998) Results from geodetic measurements in the western part of the African-Eurasian plate boundary. Tectonophysics 294(3–4):261–269

    Article  Google Scholar 

  • Beavan J, Haines J (2001) Contemporary horizontal velocity and strain rate fields of the Pacific-Australian plate boundary zone through New Zealand. J Geophys Res Solid Earth 106(B1):741–770

    Article  Google Scholar 

  • Bian W, Wu J, Wu W (2020) Recent crustal deformation based on interpolation of GNSS velocity in Continental China. Remote Sens 12(22):3753

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys 4(3):1027. https://doi.org/10.1029/2001GC000252

    Article  Google Scholar 

  • Blewitt G, Hammond WC, Kreemer C (2018) Harnessing the GPS data explosion for interdisciplinary science. Eos. https://doi.org/10.1029/2018EO104623

    Article  Google Scholar 

  • Bock Y, Melgar D (2016) Physical applications of GPS geodesy: a review. Rep Prog Phys 79(10):106801

    Article  Google Scholar 

  • Bonnette G (2020) Characterizing deformation along an early-stage rift: GPS observations from the Northern Lake Malawi (Nyasa) Rift (Doctoral dissertation, Purdue University Graduate School).

  • Bougrine A, Yelles-Chaouche AK, Calais E (2019) Active deformation in Algeria from continuous GPS measurements. Geophys J Int 217(1):572–588

    Article  Google Scholar 

  • Calais E, DeMets C, Nocquet JM (2003) Evidence for a post–3.16 Ma change in Nubia–Eurasia–North America plate motions? Earth Planet Sci Lett 216:81–92

    Article  Google Scholar 

  • Calais E, Ebinger C, Hartnady C, Nocquet JM (2006) Kinematics of the East African Rift from GPS and earthquake slip vector data. Geol Soc Lond Spec Publ 259(1):9–22

    Article  Google Scholar 

  • Calais E. http://www.geologie.ens.fr/~ecalais/teaching/geodynamics/

  • Corti G (2009) Continental rift evolution: from rift initiation to incipient break-up in the Main Ethiopian Rift, East Africa. [Firenze, Italy]. Elsevier Earth-Sci Rev 96(1–2):1–53

    Google Scholar 

  • Corti G, van Wijk J, Cloetingh S, Morley CK (2007) Tectonic inheritance and continental rift architecture: numerical and analogue models of the East African Rift system. Tectonics. https://doi.org/10.1029/2006TC002086

    Article  Google Scholar 

  • Craig TJ, Jackson JA, Priestley K, McKenzie D (2011) Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys J Int 185(1):403–434

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181(1):1–80

    Article  Google Scholar 

  • Déprez A, Doubre C, Masson F, Ulrich P (2013) Seismicand aseismic deformationa long the East African Rift system froma reanalysisof the GPS velocity field of Africa. Geophys J Int 193:1353–1369. https://doi.org/10.1093/gji/ggt085

    Article  Google Scholar 

  • Di Agostino AN, Selvaggi G (2004) Crustal motion along the Eurasia-Nubia plate boundary in the Calabrian Arc and Sicily and active extension in the Messina Straits from GPS measurements. J Geophys Res. https://doi.org/10.1029/2004JB002998

    Article  Google Scholar 

  • Dumka RK, SuriBabu D, Kotlia BS, Kothyari GC, Prajapati S (2022) Crustal deformation measurements by global positioning system (GPS) along NSL, western India. Geod Geodyn 13(3):254–260

    Article  Google Scholar 

  • Farolfi G, Del Ventisette C (2016) Contemporary crustal velocity field in Alpine Mediterranean area of Italy from new geodetic data. GPS Solut 20(4):715–722

    Article  Google Scholar 

  • Feigl KL, Thatcher W (2006) Geodetic observations of post-seismic transients in the context of the earthquake deformation cycle. CR Geosci 338(14–15):1012–1028

    Article  Google Scholar 

  • Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Wortel MJR, Spakman W, Govers R (2003) The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophys Res Lett. https://doi.org/10.1029/2003GL017089

    Article  Google Scholar 

  • Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Combrinck L, Miranda JM, Spakman W (2004) Angular velocities of Nubia and Somalia from continuous GPS data: implications on present-day relative kinematics. Earth Planet Sci Lett 222(1):197–208

    Article  Google Scholar 

  • Fernandes RMS, Miranda JM, Meijninger BML (2007) Surface velocity field of the Ibero-Maghrebian segment of the Eurasia-Nubia plate boundary. Geophys J Int 169(1):315–324

    Article  Google Scholar 

  • Gaina C (2012) The tectonic framework of the African Plate illustrated by potential field data

  • Gasperini P (2007) Kinematics of the western Africa-Eurasia plate boundary from focal mechanism and GPS data. Geophys J Int 169:1180–1200

    Article  Google Scholar 

  • Gordon RG, Stein S (1992) Global tectonics and space geodesy. Science 256(5055):333–342

    Article  Google Scholar 

  • Goudarzi MA, Cocard M, Santerre R (2014) EPC: Matlab software to estimate Euler pole parameters. GPS Solut 18(1):153–162. https://doi.org/10.1007/s10291-013-0354-4

    Article  Google Scholar 

  • Goudarzi MA, Cocard M, Santerre R (2015) Estimating Euler pole parameters for eastern Canada using GPS velocities. Geod Cartogr 41(4):162–173

    Article  Google Scholar 

  • Goudarzi MA, Cocard M, Santerre R (2016) Present-day 3D velocity field of eastern north america based on continuous GPS observations. Pure Appl Geophys 173:2387–2412

    Article  Google Scholar 

  • Gourine B (2004) Ajustement avec contraintes du réseau géodésique national. Application : réseau de base’. Mémoire de magistère en Techniques spatiales et applications, CNTS – Arzew, Algérie.

  • Haines AJ (1998) Representing distributed deformation by continuous velocity fields. Sci Rep 98(5)

  • Hasterok D, Halpin J, Collins AS, Hand M, Kreemer C, Gard M, Glorie S (2022) New maps of global geological provinces and tectonic plates. Earth Sci Rev 231:104069

    Article  Google Scholar 

  • Herring TA (2003) MATLAB Tools for viewing GPS velocities and time series. GPS Solut 7:194–199

    Article  Google Scholar 

  • Hollenstein C, Kahle HG, Geiger A, Jenny S, Goes S, Giardini D (2003) New GPS constraints on the Africa-Eurasia plate boundary zone in southern Italy. Geophys Res Lett. https://doi.org/10.1029/2003GL017554

    Article  Google Scholar 

  • Hoover W E (1984) Algorithms for confidence circles and ellipses. NOAA Technical Report NOS 107 C&GS 3.

  • Jagoda M (2021) Determination of motion parameters of selected major tectonic plates based on GNSS station positions and velocities in the ITRF2014. Sensors 21(16):5342

    Article  Google Scholar 

  • Jin S, Wang J (2008) Spreading change of Africa-South America plate: insights from space geodetic observations. Int J Earth Sci 97(6):1293–1300

    Article  Google Scholar 

  • Jin S, Zhu W (2004) Tectonic motion characteristics of the Earth planet: from 80 Ma BP up to now. Sci China Ser G 47:352–364

    Article  Google Scholar 

  • Kahveci M, Çırmık A, Doğru F, Pamukçu O, Gönenç T (2019) Subdividing the tectonic elements of Aegean and Eastern Mediterranean with gravity and GPS data. Acta Geophysica 67(2):491–500

    Article  Google Scholar 

  • Kierulf HP, Ouassou M, Simpson MJR, Vestøl O (2013) A continuous velocity field for Norway. J Geodesy 87:337–349

    Article  Google Scholar 

  • Mantovani E, Viti M, Babbucci D, Albarello D (2007) Nubia-Eurasia kinematics: an alternative interpretation from Mediterranean and North Atlantic evidence.

  • McClusky S, Reilinger R, Mahmoud S, Ben SD, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138

    Article  Google Scholar 

  • Meghraoui M, Pondrelli S (2012) Active faulting and transpression tectonics along the plate boundary in North Africa. Ann Geophys 55:5. https://doi.org/10.4401/ag-4970

    Article  Google Scholar 

  • Meghraoui M, Amponsah P, Ayadi A et al (2016) The seismotectonic map of Africa. Epis J Int Geosci 39(1):9–18

    Google Scholar 

  • Meghraoui M (2014) Seismotectonic features of the African plate: the possible dislocation of a continent. In: EGU general assembly conference abstracts, p. 4450

  • Midzi V, Hlatywayo DJ, Chapola LS, Kebede F et al (1999) Seismic hazard assessment in Eastern and Southern Africa. Ann Geophys. https://doi.org/10.4401/ag-3770

    Article  Google Scholar 

  • Mukandila N, Galula R, Masson F, Meghraoui M (2018) Is the Nubia plate rigid or divided into sub-plates? Insights from geodetic data and the seismotectonic map of Africa. In: EGU general assembly conference abstracts, p. 4314

  • Njoroge M, Malservisi R, Voytenko D, Hackl M (2015) Is Nubia plate rigid? A geodetic study of the relative motion of different cratonic areas within Africa. In: REFAG 2014, pp. 171–180. Springer, Cham

  • Nocquet JM, Calais E, Altamimi Z, Sillard P, Boucher C (2001) Intra- plate deformation in western Europe deduced from an analysis of the ITRF-97 velocity field. J Geophys Res 106:11239–11258

    Article  Google Scholar 

  • Nocquet JM, Willis P, Garcia S (2006) Plate kinematics of Nubia–Somalia using a combined DORIS and GPS solution. J Geod 80(8–11):591–607

    Article  Google Scholar 

  • Nocquet J M (2002) Mesure de la déformation crustale en Europe occidentale par géodésie spatiale (Doctoral dissertation, Nice).

  • Reilinger R, McClusky S (2011) Nubia–Arabia–Eurasia plate motions and the dynamics of Mediterranean and Middle East tectonics. Geophys J Int 186(3):971–979

    Article  Google Scholar 

  • Saleh M, Becker M (2014) A new velocity field from the analysis of the Egyptian permanent GPS network (EPGN). Arab J Geosci 7(11):4665–4682

    Article  Google Scholar 

  • Saria E, Calais E, Altamimi Z, Willis P, Farah H (2013) A new velocity field for Africa from combined GPS and DORIS space geodetic solutions: contribution to the definition of the African reference frame (AFREF). J Geophys Res Solid Earth. https://doi.org/10.1002/jgrb.50137

    Article  Google Scholar 

  • Saria E, Calais E, Stamps DS, Delvaux D, Hartnady CJH (2014) Present-day kinematics of the East African Rift. J Geophys Res Solid Earth. https://doi.org/10.1002/2013JB010901

    Article  Google Scholar 

  • Sekkour K., Kahlouche S, Dekkiche H (2017) Estimation de la déformation crustale dans le Nord de l’Algérie durant 1998–2005 à partir des données GPS. Conference: Colloque G2 Géodésie et Geophysique

  • Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res Solid Earth 107(B4):ETG11

    Article  Google Scholar 

  • Serpelloni E, Vannucci G, Pondrelli S, Argnani A et al (2007) Kinematics of the Western Africa-Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169(3):1180–1200

    Article  Google Scholar 

  • Stamps DS, Saria E, Kreemer C (2018) A geodetic strain rate model for the East African Rift System. Sci Rep 8(1):1–9

    Article  Google Scholar 

  • Swafiyudeen BAWA, Ojigi LM, Dodo JD, Lawal KM (2022) A methodology for estimating accurate velocity field of NigNET based on new ITRF realization. Contrib Geophys Geod 52(1):57–76

    Article  Google Scholar 

  • Wedmore LN, Biggs J, Floyd M, Fagereng Å et al (2021) Geodetic constraints on cratonic microplates and broad strain during rifting of thick Southern African lithosphere. Geophys Res Lett 48(17):e2021GL093785

    Article  Google Scholar 

  • Yang Z, Chen W-P (2010) Earthquakes along the East African Rift system: a multiscale, system-wide perspective. J Geophys Res 115:B12309. https://doi.org/10.1029/2009JB006779

    Article  Google Scholar 

  • Yelles-Chaouche AK, Lammali K, Bellik A et al (2019) REGAT: a permanent GPS network in Algeria, configuration and first results. Heliyon 5(4):e01435

    Article  Google Scholar 

  • Zakharov VS, Simonov DA (2010) An analysis of modern discrete movements of the Earth’s crustal blocks in geodynamically active regions based on GPS data. Mosc Univ Geol Bull 65(3):177–184

    Article  Google Scholar 

Download references

Funding

Centre of Space Techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saddam Housseyn Allal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Edited by Prof. Semih Ergintav (ASSOCIATE EDITOR) / Prof. Ramón Zúñiga (CO-EDITOR-IN-CHIEF).

Appendix

Appendix

See Tables 7, 8.

Table 7 Relative velocities of Nubia–Eurasia plate
Table 8 Relative velocities of Nubia–South America plate

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allal, S.H., Eladj, S., Dekkiche, H. et al. Recent Euler pole parameters and relative velocities of the Nubia–Eurasia and Nubia–South America plates estimated using GPS technique. Acta Geophys. 71, 1149–1171 (2023). https://doi.org/10.1007/s11600-023-01031-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-023-01031-6

Keywords

Navigation