Skip to main content

Advertisement

Log in

Performance of bias corrected monthly CMIP6 climate projections with different reference period data in Turkey

  • Research Article - Hydrology
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Decisions that are based on the future climate data, and its consequences are significantly important for many sectors such as water, agriculture, built environment, however, the performance of model outputs have direct influence on the accuracy of these decisions. This study has focused on the performance of three bias correction methods, Delta, Quantile Mapping (QM) and Empirical Quantile Mapping (EQM) with two reference data sets (ERA and station-based observations) of precipitation for 5 single CMIP6 GCM models (ACCESS-CM2, CNRM-CM6-1-HR, GFDL-ESM4, MIROC6, MRI-ESM2-0) and ensemble mean approach over Turkey. Performance of model-bias correction method-reference data set combinations was assessed on monthly basis for every single station and regionally. It was shown that performance of GCM models mostly affected by the region and the reference data set. Bias correction methods were not detected as effective as the reference data set over the performance. Moreover, Delta method outperformed among the other bias correction techniques for the computation that used observation as reference data while the difference between bias correction methods was not significant for the ERA-based computations. Besides ensemble approach, MIROC6 and MRI-ESM2-0 models were selected as the best performing models over the region. In addition, selection of the reference data sets also found to be a dominant factor for the prediction accuracy, 65% of the consistent performance at the stations achieved by the ERA reference used bias correction approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • AgriMetSoft (2018). SD-GCM Tool [Computer software]. Available at: https://agrimetsoft.com/SD-GCM.aspx

  • Amjad MR, Yilmaz MT, Yucel I, Yilmaz KK (2020) Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography. J Hydrol 584:124707

    Article  Google Scholar 

  • Atalay I, Efe R, Soykan A (2008) Mediterranean ecosystems of Turkey: ecology of the taurus mountains.

  • Bağçaci SÇ, Yucel I, Duzenli E, Yilmaz MT (2021) Intercomparison of the expected change in the temperature and the precipitation retrieved from CMIP6 and CMIP5 climate projections: A Mediterranean hot spot case, Turkey. Atmospheric Research.

  • Beyer R, Krapp M, Manica A (2020) An empirical evaluation of bias correction methods for palaeoclimate simulations. Clim past 16:1493–1508. https://doi.org/10.5194/cp-16-1493-2020

    Article  Google Scholar 

  • Boe J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the ´ Seine basin climate for hydro-meteorological studies. Int J Climatol 27:1643–1655. https://doi.org/10.1002/joc.1602

    Article  Google Scholar 

  • Cannon AJ, Sobie SR, Murdock TQ (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938–6959

    Article  Google Scholar 

  • Casanueva A, Herrera S, Iturbide M et al (2020) Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmos Sci Lett 21(21):e978. https://doi.org/10.1002/asl.978

    Article  Google Scholar 

  • Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49:4187– 4205. https://doi.org/10.1002/wrcr.20331.

    Article  Google Scholar 

  • Checa-Garcia R, Hegglin MI, Kinnison D, Plummer DA, Shine KP (2018) Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database. Geophys Res Lett 45:3264–3273. https://doi.org/10.1002/2017GL076770

    Article  Google Scholar 

  • Enayati M, Bozorg-Haddad O, Bazrafshan J, Hejabi S, Chu X (2021) Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J Water Clim Change 12(2):401–419. https://doi.org/10.2166/wcc.2020.261

    Article  Google Scholar 

  • CDS (2021) ERA5 monthly averaged data on single levels from 1979 to present Copernicus CDS. https://doi.org/10.24381/cds.f17050d7

  • Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

    Article  Google Scholar 

  • Fauzi FA, Kuswanto H, Atok RM (2020) Bias correction and statistical downscaling of earth system models using quantile delta mapping (QDM) and bias correction constructed analogues with quantile mapping reordering (BCCAQ)

  • Feigenwinter I, Kotlarski S, Casanueva A, Fischer AM, Schwierz C, Liniger MA (2018) Exploring quantile mapping as a tool to produce user-tailored climate scenarios for Switzerland, Technical Report MeteoSwiss, 270, 44 pp

  • Fu Y, Lin Z, Guo D (2020) Improvement of the simulation of the summer East Asian westerly jet from CMIP5 to CMIP6. Atmosp Oceanic Sci Lett 13:550–558

    Article  Google Scholar 

  • Goldenson N, Thackeray CW, Hall AD, Swain DL, Berg N (2021) Using large ensembles to identify regions of systematic biases in moderate to heavy daily precipitation. Geophys Res Lett 48:e2020GL092026. https://doi.org/10.1029/2020GL092026

    Article  Google Scholar 

  • Gudmundsson L (2014) Qmap: statistical transformations for post-processing climate model output

  • Gudmundsson L, Bremnes JB, Haugen JE, Engen-Skaugen T (2012) Technical note downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrol Earth Syst Sci 16(9):3383–3390. https://doi.org/10.5194/hess-16-3383-2012

    Article  Google Scholar 

  • Gunavathi S, Selvasidhu R (2021) Assessment of various bias correction methods on precipitation of regional climate model and future projection, 07 April 2021, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-339080/v1]

  • Haerter JO, Eggert B, Moseley C, Piani C, Berg P (2015) Statistical precipitation bias correction of gridded model data using point measurements. Geophy Res Lett 42:1919–1929

    Article  Google Scholar 

  • Hay LE, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the united states. JAWRA J Am Water Resourc Assoc 36:387–397. https://doi.org/10.1111/j.1752-1688.2000.tb04276.x

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hosseinzadehtalaei P, Ishadi NK, Tabari H, Willems P (2021) Climate change impact assessment on pluvial flooding using a distribution-based bias correction of regional climate model simulations. J Hydrol 598:126239

    Article  Google Scholar 

  • Jose DM, Dwarakish GS (2022) Ranking of downscaled CMIP5 and CMIP6 GCMs at a basin scale: case study of a tropical river basin on the South West coast of India. Arab J Geosci 15:120. https://doi.org/10.1007/s12517-021-09289-0

    Article  Google Scholar 

  • Kara F, Yucel I, Akyurek Z (2016) Climate change impacts on extreme precipitation of water supply area in Istanbul: use of ensemble climate modelling and geo-statistical downscaling. Hydrol Sci J 61:2481–2495

    Article  Google Scholar 

  • Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K, Muir-Wood RG, Robert B, Wolfgang K, Gerardo B, Yasushi H, Kiyoshi T, Boris S (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59(1):1–28. https://doi.org/10.1080/02626667.2013.857411

    Article  Google Scholar 

  • Kundzewicz ZW, Krysanova V, Dankers R, Hirabayashi Y, Kanae S, Hattermann FF, Huang S, Milly PC, Stoffel M, Driessen PP, Matczak P, Quevauviller P, Schellnhuber HJ (2016) Differences in flood hazard projections in Europe – their causes and consequences for decision making. Hydrol Sci J 62:1–14

    Google Scholar 

  • Le Roy B, Lemonsu A, Schoetter R (2021) A statistical–dynamical downscaling methodology for the urban heat island applied to the EURO-CORDEX ensemble. Clim Dyn 56:2487–2508. https://doi.org/10.1007/s00382-020-05600-z

    Article  Google Scholar 

  • Lin W, Chen H (2020) Assessment of model performance of precipitation extremes over the mid-high latitude areas of Northern Hemisphere: from CMIP5 to CMIP6. Atmosph Oceanic Sci Lett 13:598–603

    Article  Google Scholar 

  • Liu X, Li C, Zhao T, Han L (2020) Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmosph Oceanic Sci Lett 13:568–575

    Article  Google Scholar 

  • Luo N, Guo Y, Gao Z, Chen K, Chou J (2020) Assessment of CMIP6 and CMIP5 model performance for extreme temperature in China. Atmosph Oceanic Sci Lett 13:589–597

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themeßl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate 20 change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys 48:RG3003. https://doi.org/10.1029/2009RG000314

    Article  Google Scholar 

  • Monerie PA, Wainwright CM, Sidibe M, Akinsanola AA (2020) Model uncertainties in climate change impacts on Sahel precipitation in ensembles of CMIP5 and CMIP6 simulations. Clim Dyn 55:1385–1401. https://doi.org/10.1007/s00382-020-05332-0

    Article  Google Scholar 

  • Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, Boussetta S, Choulga M, Harrigan S, Hersbach H, Martens B, Miralles DG, Piles M, Rodríguez-Fernández NJ, Zsoter E, Buontempo C, Thépaut J-N (2021) ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13:4349–4383. https://doi.org/10.5194/essd-13-4349-2021

    Article  Google Scholar 

  • Navarro-Racines CE, Tarapues-Montenegro JE (2015) Bias-correction in the CCAFS-climate portal: a description of methodologies. Decision and policy analysis (DAPA) research area. International Center for Tropical Agriculture (CIAT), Cali, Colombia

    Google Scholar 

  • Ngoma H, Wen W, Ayugi B, Babaousmail H, Karim R, Ongoma V (2021) Evaluation of precipitation simulations in CMIP6 models over Uganda. Int J Climatol 41:4743–4768. https://doi.org/10.1002/joc.7098

    Article  Google Scholar 

  • Nissan H, Goddard L, de Perez EC et al (2019) On the use and misuse of climate change projections in international development. WIREs Clim Change 10:e579. https://doi.org/10.1002/wcc.579

    Article  Google Scholar 

  • Ombadi M, Nguyen P, Sorooshian S, Hsu K (2018) Developing intensity-duration-frequency (IDF) curves from satellite-based precipitation: methodology and evaluation. Water Resour Res 54:7752–7766

    Article  Google Scholar 

  • O’Neill BC, Tebaldi C, Vuuren DP, Eyring V, Friedlingstein P, Hurtt GC, Knutti R, Kriegler E, Lamarque J, Lowe JA, Meehl GA, Moss RH, Riahi K, Sanderson BM (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Develop 9:3461–3482

    Article  Google Scholar 

  • Panofsky HA, Brier GW (1968) Some applications of statistics to meteorology. The Pennsylvania State University, 224 pp

  • Pereira HR, Meschiatti MC, Pires RC, Blain GC (2018) On the performance of three indices of agreement: an easy-to-use r-code for calculating the Willmott indices. Bragantia 77:394–403

    Article  Google Scholar 

  • Piani C, Weedon G, Best M, Gomes S, Viterbo P, Hagemann S, Haerter J (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. https://doi.org/10.1016/j.jhydrol.2010.10.024

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

  • Ramirez-Villegas J, Challinor AJ, Thornton PK, Jarvis A (2013) Implications of regional improvement in global climate models for agricultural impact research. Environ Res Lett 8:24018

    Article  Google Scholar 

  • Salehnia N, Hosseini FS, Farid A, Kolsoumi S, Zarrin A, Hasheminia M (2019) Comparing the performance of dynamical and statistical downscaling on historical run precipitation data over a semi-arid region. Asia-Pac J Atmos Sci 55:737–749

    Article  Google Scholar 

  • Sariş F, Hannah DM, Eastwood WJ (2010) Spatial variability of precipitation regimes over Turkey. Hydrol Sci J 55(2):234–249

    Article  Google Scholar 

  • SEVENTH NATIONAL COMMUNICATION OF TURKEY UNDER THE UNFCCC (2018) SEVENTH NATIONAL COMMUNICATON OF TURKEY Under the United Nations Framework Convention on Climate Change Republic of Turkey Ministry of Environment and Urbanization. Republic of Turkey Ministry of Environment and Urbanization General Directorate of Environmental Management Department of Climate Change

  • Song YH, Nashwan MS, Chung E, Shahid S (2021) Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea. Atmosph Res 247:105261

    Article  Google Scholar 

  • Stellingwerf S, Riddle E, Hopson TM, Knievel JC, Brown B, Gebremichael M (2011) Optimizing precipitation forecasts for hydrological catchments in Ethiopia using statistical bias correction and multi-modeling. Earth and Space Sci 8:e2019EA000933. https://doi.org/10.1029/2019EA000933

    Article  Google Scholar 

  • Stouffer RJ, Eyring V, Meehl GA, Bony S, Senior CA, Stevens B, Taylor KE (2017) CMIP5 scientific gaps and recommendations for CMIP6. Bull Am Meteor Soc 98:95–105

    Article  Google Scholar 

  • Sunyer MA et al (2015) Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol Earth Syst Sci 19(1827–1847):2015. https://doi.org/10.5194/hess-19-1827-

    Article  Google Scholar 

  • Taylan D, Aydın T (2018) The trend analysis of lakes region precipitation data in Turkey. Cumhuriyet Science Journal 39(1):258–273. https://doi.org/10.17776/csj.406271

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Change 112:449–468. https://doi.org/10.1007/s10584-011-0224-4

    Article  Google Scholar 

  • Themeßl MJ, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31:1530–1544. https://doi.org/10.1002/joc.2168

    Article  Google Scholar 

  • Tiwari PR, Kar SC, Mohanty UC et al (2019) Comparison of statistical and dynamical downscaling methods for seasonal-scale winter precipitation predictions over north India. Int J Climatol 39:1504–1516. https://doi.org/10.1002/joc.5897

    Article  Google Scholar 

  • Tong Y, Gao X, Han Z et al (2021) Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Clim Dyn 57:1425–1443. https://doi.org/10.1007/s00382-020-05447-4

    Article  Google Scholar 

  • Ullah A, Salehnia N, Kolsoumi S, Ahmad A, Khaliq T (2018) Prediction of effective climate change indicators using statistical downscaling approach and impact assessment on pearl millet (Pennisetum glaucum L) yield through genetic algorithm in Punjab. Pakistan Ecol Indic 90:569–576. https://doi.org/10.1016/j.ecolind.2018.03.053

    Article  Google Scholar 

  • Wetterhall F, Pappenberger F, He Y, Freer J, Cloke HL (2012) Conditioning model output statistics of regional climate model precipitation on circulation patterns. Nonlin. Processes Geophys. 19:623–633. https://doi.org/10.5194/npg-19-623-2012

    Article  Google Scholar 

  • Willmott CJ, Robeson SM, Matsuura KA (2012) A refined index of model performance. Int J Climatol 32:2088–2094. https://doi.org/10.1002/joc.2419

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194

    Article  Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e

    Article  Google Scholar 

  • Wuthiwongyothin S, Mili S, Phadungkarnlert N (2020) A study of correcting climate model daily rainfall product using quantile mapping in upper Ping River Basin, Thailand. In: Trung VN, Xiping D, Thanh TT (eds) Springer. Singapore. https://doi.org/10.1007/978-981-15-0291-0_166

    Chapter  Google Scholar 

  • Wyser K, Kjellström E, Königk T, Martins H, Doescher R (2020) Warmer climate projections in EC-Earth3-Veg: the role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ Res Lett 15:054020

    Article  Google Scholar 

  • Zhang L, Xu Y, Meng C, Li X, Liu H, Wang C (2020) Comparison of statistical and dynamic downscaling techniques in generating high-resolution temperatures in China from CMIP5 GCMs. J Appl Meteorol Climatol 59(2):207–235

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sertac Oruc.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Communicated by Dr. Mohammad Valipour (ASSOCIATE EDITOR).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oruc, S. Performance of bias corrected monthly CMIP6 climate projections with different reference period data in Turkey. Acta Geophys. 70, 777–789 (2022). https://doi.org/10.1007/s11600-022-00731-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-022-00731-9

Keywords

Navigation