Skip to main content

Investigation on the statistical characteristics of geoelectric field seismic anomalies in the North–South seismic belt of Chinese mainland

Abstract

Geoelectric field (GEF) measurements have documented many pre-earthquake electromagnetic anomalies over the past few decades. However, the statistical characteristics between earthquakes and GEF are still unclear. In this paper, we use the shifting correlation method to analyze the statistical features of earthquake precursory information in GEF data recorded in the North–South seismic belt of Chinese mainland during 2010–2019. Three factors, seismic energy, epicentral distance (D), and the fault, were used to select the seismic events. In the analysis section, the results of two significance test methods were used as the anomaly standard. The results show that the GEF anomalies associated with seismic events appear about 30 days before the earthquakes, and the anomalies appear earlier at stations farther away from the epicenter. In addition, the selective characteristics of the GEF are strongly correlated with the location of stations and the geological-tectonic environment in which the epicenter is located. Moreover, the results approved the empirical conclusion that the larger the seismic energy is, the larger the impact area is. The statistical characteristics of the seismic GEF anomalies in the North–South seismic belt of Chinese mainland may provide technical support for exploring the phenomenon and mechanism of seismic GEF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. An ZH, Du XB, Fan YY et al (2015) Characteristics of Geo-electric Field Changes before the 2013 Lushan MS7.0 Earthquake (in Chinese). Earthquake 35(1):91–99

    Google Scholar 

  2. Chen L, Liu J, Chen O et al (1998) Aftershock deletion in seismicity analysis. Chin J Geophys 41(S1):244–252

    Google Scholar 

  3. Chen Q, An ZH, Fan YY (2019) Statistical evidence of tidal triggered earthquake in north and south seismic belt. Progress in Geophysics (in Chinese) 34(5):1714–1720

    Google Scholar 

  4. Console R, Gasparini C, De Simoni B et al (1979) Preambolo al Catalogo Sismico Nazionale (CSN). I criteri di informazione del Catalogo Sismico Nazionale (CSN)[J]. Annal Geophys 32(1):37–77. https://doi.org/10.4401/ag-4729

    Article  Google Scholar 

  5. Cui TF, Du XB, Ye Q et al (2013) The diurnal variation of geo-electric field along the longitude and latitude chains in China mainland. Chin J Geophys 56(7):2358–2368. https://doi.org/10.1002/cjg2.20039

    Article  Google Scholar 

  6. Deng QD, Zhang PZ, Ran YK et al (2003) Active tectonics and earthquake activities in China. Earth Sci Front 10(S1):66–73

    Google Scholar 

  7. Eftaxias K, Kapiris P, Polygiannakis J et al (2001) Signature of pending earthquake from electromagnetic anomalies. Geophys Res Lett 28(17):3321–3324. https://doi.org/10.1029/2001GL013124

    Article  Google Scholar 

  8. Eftaxias K, Balasis G, Contoyiannis Y et al (2010) Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones - Part 2. Natural Hazards and Earth System Science 10(2):275–294. https://doi.org/10.5194/nhess-10-275-2010

    Article  Google Scholar 

  9. Enomoto Y (2012) Coupled interaction of earthquake nucleation with deep Earth gases: a possible mechanism for seismo-electromagnetic phenomena. Geophys J Int 191(3):1210–1214. https://doi.org/10.1111/j.1365-246X.2012.05702.x

    Article  Google Scholar 

  10. Fan YY, Du XB, Zlotnicki Jacques et al (2010) The electromagnetic phenomena before the MS8.0 Wenchuan earthquake. Chin J Geophys 53(12):2887–2898. https://doi.org/10.1002/cjg2.1570

    Article  Google Scholar 

  11. Freud FT (2007) Pre-earthquake signals-Part I: deviatoric stresses turn rocks into a source of electric currents[J]. Nat Hazards Earth Syst Sci 7(5):535–541. https://doi.org/10.5194/nhess-7-535-2007

    Article  Google Scholar 

  12. Fujinawa Y, Takahashi K (1998) Electromagnetic radiations associated with major earthquakes. Phys Earth Planet Inter 105(3–4):249–259. https://doi.org/10.1016/S0031-9201(97)00117-9

    Article  Google Scholar 

  13. Gao YX, Hu HS (2010) Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium. Geophys J Int 181(2):873–896. https://doi.org/10.1111/j.1365-246X.2010.04526.x

    Article  Google Scholar 

  14. Gao YX, Chen XF, Hu HS et al (2013a) Early electromagnetic waves from earthquake rupturing: I. Theoretical Formulations. Geophys J Int 192(3):1288–1307. https://doi.org/10.1093/gji/ggs096

    Article  Google Scholar 

  15. Gao YX, Chen XF, Hu HS et al (2013) Early electromagnetic waves from earthquake rupturing: II. Validation and numerical experiments. Geophys J Int 192(3):1308–1323. https://doi.org/10.1093/gji/ggs097

    Article  Google Scholar 

  16. Geller RJ (1996) Debate on evaluation of the VAN method: Editor’s introduction. Geophys Res Lett 23(11):1291–1293. https://doi.org/10.1029/96GL00742

    Article  Google Scholar 

  17. Gutenberg B, Richter CF (1956) Magnitude and energy of earthquakes. Ann Geophys 9:1–15. https://doi.org/10.1144/GSL.JGS.1956.112.01-04.02

    Article  Google Scholar 

  18. Guzmán-Vargas L, Ramírez-Rojas A, Angulo-Brown F (2008) Multiscale entropy analysis of electroseismic time series. Nat Hazards Earth Syst Sci 8(4):855–860. https://doi.org/10.5194/nhess-8-855-2008

    Article  Google Scholar 

  19. Han P (2009) Principal component analysis of geomagnetic diurnal variation associated with earthquakes: case study of the M 6.1 Iwateken Nairiku Hokubu earthquake[J]. Chin J Geophys 52:1556–1563

    Article  Google Scholar 

  20. Han P, Hattori K, Hirokawa M et al (2014) Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J Geophys Res: Space Phys 119:4998–5011. https://doi.org/10.1002/2014JA019789

    Article  Google Scholar 

  21. Han P, Hattori K, Xu G et al (2015) Further investigations of geomagnetic diurnal variations associated with 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). J Asian Earth Sci 114:321–326. https://doi.org/10.1016/j.jseaes.2015.02.022

    Article  Google Scholar 

  22. Han P, Hattori K, Huang QH, Hirooka S, Yoshino C (2016a) Spatiotemporal characteristics of the geomagnetic diurnal variation anomalies prior to the 2011 Tohoku earthquake (Mw 9.0) and the possible coupling of multiple pre-earthquake phenomena. J Asian Earth Sci 129:13–21. https://doi.org/10.1016/j.jseaes.2016.07.011

    Article  Google Scholar 

  23. Han P, Hattori K, Zhuang J et al (2016b) Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys J Int 208:482–490. https://doi.org/10.1093/gji/ggw404

    Article  Google Scholar 

  24. Hattori K, Serita A, Gotoh K et al (2004) ULF geomagnetic anomaly associated with 2000 Izu Islands earthquake swarm, Japan[J]. Phys Chem Earth 29(4/9):425–435

    Article  Google Scholar 

  25. Hattori K, Serita A, Yoshino C, Hayakawa M, Isezaki N (2006) Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm. Phys Chem Earth 31(4–9):281–291. https://doi.org/10.1016/j.pce.2006.02.034

    Article  Google Scholar 

  26. Huang QH, Ikeya M (1998) Seismic electromagnetic signals (SEMS) explained by a simulation experiment using electromagnetic waves. Phys Earth Planet Inter 109(3):107–114. https://doi.org/10.1016/S0031-9201(98)00135-6

    Article  Google Scholar 

  27. Huang QH, Lin Y (2010) Selectivity of seismic electric signal (SES) of the 2000 Izu earthquake swarm: a 3D FEM numerical simulation model. Proc Jpn Acad Ser B Phys Biol Sci 86(3):257–264. https://doi.org/10.2183/pjab.86.257

    Article  Google Scholar 

  28. Ida Y, Hayakawa M (2006) Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. Nonlinear Process Geophys 13(4):409–412. https://doi.org/10.5194/npg-13-409-2006

    Article  Google Scholar 

  29. Ida Y, Yang D, Li H et al (2012) Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China. Nonlinear Process Geophys 19:577–583. https://doi.org/10.5194/npg-19-577-2012

    Article  Google Scholar 

  30. Ifantis A, Economou G, Despotopoulos S et al (1997) Exploratory analysis of electrotelluric field data for earthquake prediction. DSP 1997:973–976. https://doi.org/10.1109/ICDSP.1997.628526

    Article  Google Scholar 

  31. Ifantis A (2002) A New approach to investigate the correlation between periodicity of geoelectric field and earthquakes. In: International Conference on Digital Signal Processing, DSP (Vol. 2, pp. 905–910). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ICDSP.2002.1028237

  32. Jiang F, Chen X, Zhan Y, Zhao G, Yang H, Zhao L, Qiao L, Wang L (2016) Shifting correlation between earthquakes and electromagnetic signals: a case study of the 2013 Minxian-Zhangxian M L 6.5 (M W 6.1) earthquake in Gansu, China. Pure Appl Geophys 173(1):269–284. https://doi.org/10.1007/s00024-015-1055-4

    Article  Google Scholar 

  33. Kotsarenko A, Molchanov O, Hayakawa M et al (2005) Investigation of ULF magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at summer 2000, Japan. Nat Hazard 5:63–69. https://doi.org/10.5194/nhess-5-63-2005

    Article  Google Scholar 

  34. Nitsan U (1977) Electromagnetic emission accompanying fracture of quartz-bearing rocks[J]. Geophys Res Lett 4(8):333–336. https://doi.org/10.1029/GL004i008p00333

    Article  Google Scholar 

  35. Orihara Y, Noda Y, Nagao T et al (2002) A possible case of SES selectivity at Kozu-shima Island Japan. J Geodyn 33(4–5):425–432. https://doi.org/10.1016/S0264-3707(02)00005-4

    Article  Google Scholar 

  36. Orihara Y, Kamogawa M, Nagao T, Uyeda S (2012) Preseismic anomalous telluric current signals observed in Kozushima Island, Japan. Proc Natl Acad Sci 109(47):19125–19128. https://doi.org/10.1073/pnas.1215669109

    Article  Google Scholar 

  37. Panfilov AA (2014) The results of experimental studies of VLF-ULF electromagnetic emission by rock samples due to mechanical action[J]. Nat Hazard 14(6):1383. https://doi.org/10.5194/nhess-14-1383-2014

    Article  Google Scholar 

  38. Potirakis SM, Minadakis G, Eftaxias K (2012) Relation between seismicity and pre-earthquake electromagnetic emissions in terms of energy, information and entropy content. Nat Hazard 12:1179–1183. https://doi.org/10.5194/nhess-12-1179-2012

    Article  Google Scholar 

  39. RamírezRojas A, FloresMárquez E. L, GuzmánVargas L, GálvezCoyt G, Telesca L, Angulobrown F (2008) Statistical features of seismoelectric signals prior to m7.4 guerrero-oaxaca earthquake (méxico). Natural Hazards and Earth System Sciences, 8(5), 1001-1007. https://doi.org/10.5194/nhess-8-1001-2008

  40. Sarlis NV (2018) Statistical significance of earth’s electric and magnetic field variations preceding earthquakes in Greece and Japan revisited. Entropy. https://doi.org/10.3390/e20080561

    Article  Google Scholar 

  41. Sarlis N, Lazaridou M, Kapiris P et al (1999) Numerical model of the selectivity effect and the ΔV/L criterion. Geophys Res Lett 26(21):3245–3248. https://doi.org/10.1029/1998GL005265

    Article  Google Scholar 

  42. Sobolev GA (1975) Application of Electric Method to the Tentative Short-Term Forecast of Kamchatka Earthquakes. In: Wyss M (ed) Earthquake Prediction and Rock Mechanics. Contributions to Current Research in Geophysics (CCRG), Birkhäuser, Basel

    Google Scholar 

  43. Tan DC, Zhao JL, Xi JL et al (2010) (2010) A study on feature and mechanism of the tidal geoelectrical field. Chin J Geophys (in Chinese) 53(3):544–555. https://doi.org/10.3969/j.issn.0001-5733.2010.03.008

    Article  Google Scholar 

  44. Uyeda S (2000) In defense of VAN’s earthquake predictions. EOS Trans Am Geophys Union 81:3–3. https://doi.org/10.1029/00EO00005

    Article  Google Scholar 

  45. Uyeda S, Kumamoto A (2004) Evaluation of the Kushida Method of short-term earthquake prediction. Proc Jpn Acad Ser B 80(3):140–147. https://doi.org/10.2183/pjab.80.140

    Article  Google Scholar 

  46. Uyeda S, Nagao T, Orihara Y et al (2000) Geoelectric potential changes: possible precursors to earthquakes in Japan. Proc Natl Acad Sci 97(9):4561–4566. https://doi.org/10.1073/pnas.97.9.4561

    Article  Google Scholar 

  47. Uyeda S, Hayakawa M, Nagao T et al (2002) Electric and magnetic phenomena observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan. Proc Natl Acad Sci 99(11):7352–7355. https://doi.org/10.1073/pnas.072208499

    Article  Google Scholar 

  48. Vallianatos F, Triantis D (2008) Scaling in Pressure Stimulated Currents related with rock fracture. Physica A 387(19–20):4940–4946. https://doi.org/10.1016/j.physa.2008.03.028

    Article  Google Scholar 

  49. Varotsos P, Alexopoulos K (1984a) Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics 110(1–2):73–98. https://doi.org/10.1016/0040-1951(84)90059-3

    Article  Google Scholar 

  50. Varotsos P, Alexopoulos K (1984) Physical properties of the variations of the electric field of the earth preceding earthquakes. II. Determination of epicenter and magnitude. Tectonophysics 110(1–2):99–125. https://doi.org/10.1016/0040-1951(84)90060-X

    Article  Google Scholar 

  51. Varotsos PA, Alexopoulous K, Nomicos K (1981) Seismic electric currents. Praktica Athens Acad 56:277–286

    Google Scholar 

  52. Varotsos P, Alexopoulos K, Lazaridou M (1993) Latest aspects of earthquake prediction in Greece based on seismic electric signals II. Tectonophysics 224(1):1–37. https://doi.org/10.1016/0040-1951(93)90055-O

    Article  Google Scholar 

  53. Varotsos P, Sarlis N, Lazaridou M, Kapiris P (1998) Transmission of stress induced electric signals in dielectric media. J Appl Phys 83(1):60–70. https://doi.org/10.1063/1.366702

    Article  Google Scholar 

  54. Varotsos P, Sarlis N, Skordas E et al (2005) Additional evidence on some relationship between Seismic Electric Signals (SES) and earthquake focal mechanism. Tectonophysics 412(3):279–288. https://doi.org/10.1016/j.tecto.2005.10.037

    Article  Google Scholar 

  55. Wang XS, Lü J, Xie ZJ et al (2015) Focal mechanisms and tectonic stress field in the North-South Seismic Belt of China. Chin J Geophys 58(11):4149–4162. https://doi.org/10.6038/cjg20151122

    Article  Google Scholar 

  56. Zhang JG, Jiao LG, Liu XC et al (2013) A study on the characteristics of ULF electromagnetic spectrum before and after the Wenchuan MS8.0 earthquake. Chin J Geophys 56(4):1253–1261. https://doi.org/10.6038/cjg20130420

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the China Earthquake Network Center for providing observation data for the GEF and earthquake catalogue. We also thank Prof. Chen Xiaobin and Dr. Jiang Feng (Institute of geology of CEA) for providing the original program. We also thank GMT for providing the mapping support. This work was funded by the Gansu Province Science and Technology Plan Project (No. 20JR10RA498) and Earthquake Science Spark Program of China Earthquake Administration (XH16037). The authors wish to thank the editor and the reviewer for their fruitful comments on an earlier version of the paper.

Funding

This work was funded by the Gansu Province Science and Technology Plan Project (No. 20JR10RA498) and Earthquake Science Spark Program of China Earthquake Administration (XH16037).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by HZY, AZH, and FYY. The first draft of the manuscript was written by HZY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to An Zhang-Hui.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare that are relevant to the content of this article.

Data availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Custom code.

Consent for publication

Written informed consent for publication was obtained from all participants.

Additional information

Communicated by Dr. Nikolay Palshin (ASSOCIATE EDITOR)/Prof. Ramon Zuñiga (CO-EDITOR-IN-CHIEF).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ze-Yu, H., Zhang-Hui, A., Ying-Ying, F. et al. Investigation on the statistical characteristics of geoelectric field seismic anomalies in the North–South seismic belt of Chinese mainland. Acta Geophys. (2021). https://doi.org/10.1007/s11600-021-00661-y

Download citation

Keywords

  • The geoelectric field
  • Statistical characteristics
  • Shifting correlation method
  • North–South seismic belt
  • Seismic anomalies