Skip to main content
Log in

Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Seismic signal can be expressed by nonstationary convolution model (NCM) which integrates acoustic impedance (AI), attenuation factor (AF) and source wavelet (SW) into a single formula. Although it provides attractive potential to invert AI, AF and SW, simultaneously, effective joint inversion algorithm has not been developed because of the extreme instability of this nonlinear inverse problem. In this paper, we propose an alternating optimization scheme to achieve this nonlinear joint inversion. Our algorithm repeatedly alternates among three subproblems corresponding to AI, AF and SW recovery until changes in inverted models become smaller than the user-defined tolerances. Also, when we optimize one parameter, other two parameters are fixed. NCM is an explicit linear formula for AI; therefore, AI recovery is accomplished by linear inversion which is regularized by low-frequency model and isotropy total variation domain sparse constraints. However, NCM is a complicated nonlinear formula for AF. To facilitate the AF inversion, we propose a centroid frequency-based attenuation tomography method whose forward operator and observations are acquired from the time-varying wavelet amplitude spectra which is estimated according to Gabor domain factorization of NCM. SW is decoupled from NCM based on Toeplitz structure constraint, and we obtain an orthogonal wavelet transform domain sparse regularized SW inverse subproblem. Split Bregman technique is adopted to optimize AI and SW inverse subproblems. Numerical test and field data application confirm that the proposed nonstationary seismic inversion algorithm can stably generate accurate estimates of AI, AF and SW, simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aharon M, Elad M, Bruckstein AM (2006) The K-SVD: An algorithm for designing of evercomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322

    Google Scholar 

  • Alaei N, Kahoo AR, Rouhani AK, Soleimani M (2018) Seismic resolution enhancement using scale transform in the time-frequency domain. Geophysics 83(6):V305–V314

    Google Scholar 

  • Bickel SH, Natarajan RR (1985) Plane-wave Q deconvolution. Geophysics 50(9):1426–1439

    Google Scholar 

  • Chai X, Wang S, Yuan S, Zhao J, Sun L, Wei X (2014) Sparse reflectivity inversion for nonstationary seismic data. Geophysics 79(3):V93–V105

    Google Scholar 

  • Chai X, Wang S, Wei J, Li J, Yin H (2016) Reflectivity inversion for attenuated seismic data: physical modeling and field data experiments. Geophysics 81(1):T11–T24

    Google Scholar 

  • Chen S, Wei Q, Liu L, Li XY (2018) Data-driven attenuation compensation via a shaping regularization scheme. IEEE Geosci Remote Sens Lett 15(11):1667–1671

    Google Scholar 

  • Chen Z, Wang Y, Chen X, Li J (2013) High-resolution seismic processing by Gabor deconvolution. J Geophys Eng 10(6):1–10

    Google Scholar 

  • Cheng L, Wang S, Li S, Ji Y (2020) Multi-trace nonstationary sparse inversion with structural constraints. Acta Geophys 68(3):675–685

    Google Scholar 

  • Craven P, Wahba G (1978) Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation. NUMER MATH 31(4):377–403

    Google Scholar 

  • Daubechies I (1992) Orthogonal bases of compactly supported wavelets Ten Lectures on Wavelets, 2nd edn. SIAM, Pennsylvania, pp 161–213

    Google Scholar 

  • Engelhard L (1996) Determination of seismic-wave attenuation by complex trace analysis. Geophys J Int 125(2):608–622

    Google Scholar 

  • Foster M (1975) Transmission effects in the continuous one-dimensional seismic model. Geophys J R Astr Soc 42(2):519–527

    Google Scholar 

  • Futterman WI (1962) Dispersive body waves. J Geophys Res 67(13):5279–5291

    Google Scholar 

  • Gholami A, Siahkoohi HR (2010) Regularization of linear and non-linear geophysical ill-posed problems with joint sparsity constraints. Geophys J Int 180(2):871–882

    Google Scholar 

  • Gholami A (2016) A fast automatic multichannel blind seismic inversion for high-resolution impedance recovery. Geophysics 81(5):V357–V364

    Google Scholar 

  • Goldstein T, Osher S (2009) The split Bregman method for L1-regularized problems. SIAM J Imag Sci 2(2):323–343

    Google Scholar 

  • Hamid H, Pidlisecky A (2015) Multitrace impedance inversion with lateral constraints. Geophysics 80(6):M101–M111

    Google Scholar 

  • Hansen PC, O’Leary D (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput 14(6):1487–1503

    Google Scholar 

  • Hao Y, Huang H, Gao J, Zhang S (2019) Inversion-based time-domain inverse Q-filtering for seismic resolution enhancement. IEEE Geosci Remote Sens Lett 16(12):1934–1938

    Google Scholar 

  • Hao Y, Huang H, Luo Y, Gao J, Yuan S (2018) Nonstationary acoustic-impedance inversion algorithm via a novel equivalent Q-value estimation scheme and sparse regularizations. Geophysics 83(6):R681–R698

    Google Scholar 

  • Hao Y, Wen X, Zhang B, He Z, Zhang R, Zhang J (2016) Q estimation of seismic data using the generalized S-transform. J Appl Geophys 135:122–134

    Google Scholar 

  • Kim Y, Cho Y, Shin C (2013) Estimated source wavelet-incorporated reverse-time migration with a virtual source imaging condition. Geophys Prospect 61(s1):317–333

    Google Scholar 

  • Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res 84:4737–4748

    Google Scholar 

  • Kolsky H (1956) The propagation of stress pulses in viscoelastic solids. Phil Mag 1(8):693–710

    Google Scholar 

  • Li C, Liu X (2015) A new method for interval Q-factor inversion from seismic reflection data. Geophysics 80(6):R361–R373

    Google Scholar 

  • Lindseth R (1979) Synthetic sonic logs: A process for stratigraphic interpretation. Geophysics 44(1):3–26

    Google Scholar 

  • Ma M, Wang S, Yuan S, Gao J, Li S (2018) Multichannel block sparse Bayesian learning reflectivity inversion with lp-norm criterion-based Q estimation. J Appl Geophys 159:434–445

    Google Scholar 

  • Ma X (2001) A constrained global inversion method using an overparameterized scheme: application to poststack seismic data. Geophysics 66(2):613–626

    Google Scholar 

  • Ma X, Li G, Li H, Li J, Fan X (2020) Stable absorption compensation with lateral constraint. Acta Geophys. https://doi.org/10.1007/s11600-020-00453-w

    Article  Google Scholar 

  • Margrave GF, Lamoureux MP, Henley DC (2011) Gabor deconvolution: estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics 76(3):W15–W30

    Google Scholar 

  • Quan Y, Harris JM (1997) Seismic attenuation tomography using the frequency shift method. Geophysics 62(3):895–905

    Google Scholar 

  • Stark PB, Parker RL (1995) Bounded-variable least-squares: an algorithm and applications. Comput Stat 10:129–141

    Google Scholar 

  • Van der Baan M (2008) Time-varying wavelet estimation and deconvolution by kurtosis maximization. Geophysics 73(2):V11–V18

    Google Scholar 

  • Velis DR (2008) Stochastic sparse-spike deconvolution. Geophysics 73(1):R1–R9

    Google Scholar 

  • Walker C, Ulrych TJ (1983) Autoregressive recovery of the acoustic impedance. Geophysics 48(10):1338–1350

    Google Scholar 

  • Wang S, Li XY, Qian Z, Di B, Wei J (2007) Physical modelling studies of 3-D P-wave seismic for fracture detection. Geophys J Int 168(2):745–756

    Google Scholar 

  • Wang Y (2002) A stable and efficient approach of inverse Q filtering. Geophysics 67(2):657–663

    Google Scholar 

  • Wang Y (2006) Inverse Q-filter for seismic resolution enhancement. Geophysics 71(3):V51–V60

    Google Scholar 

  • Wang Y (2015) Generalized seismic wavelets. Geophys J Int 203(2):1172–1178

    Google Scholar 

  • Wang Y (2017) Seismic wavelet estimation Seismic inversion: theory and applications, 1st edn. Blackwell, London, pp 99–103

    Google Scholar 

  • Wang Y, Ma X, Zhou H, Chen Y (2018) L1–2 minimization for exact and stable seismic attenuation compensation. Geophys J Int 213(3):1629–1646

    Google Scholar 

  • Wuenschel PC (1965) Dispersive body waves: an experimental study. Geophysics 30(4):539–551

    Google Scholar 

  • Yu Y, Wang S, Yuan S, Qi P (2011) Phase estimation in bispectral domain based on conformal mapping and applications in seismic wavelet estimation. Appl Geophys 8(1):36–47

    Google Scholar 

  • Yuan S, Wang S, Luo Y, Wei W, Wang G (2019) Impedance inversion by using the low-frequency full-waveform inversion result as an a priori model. Geophysics 84(2):R149–R164

    Google Scholar 

  • Yuan S, Wang S, Ma M, Ji Y, Deng L (2017) Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans Geosci Remote 55(11):6182–6194

    Google Scholar 

  • Yuan S, Wang S, Tian N, Wang Z (2016) Stable inversion-based multitrace deabsorption method for spatial continuity preservation and weak signal compensation. Geophysics 81(3):V199–V212

    Google Scholar 

  • Zhang G, Wang X, He Z (2015) A stable and self-adaptive approach for inverse Q-filter. J Appl Geophys 116:236–246

    Google Scholar 

  • Zhang R, Castagna J (2011) Seismic sparse-layer reflectivity inversion using basis pursuit decomposition. Geophysics 76(6):R147–R158

    Google Scholar 

  • Zhang R, Sen MK, Srinivasan S (2013) A prestack basis pursuit seismic inversion. Geophysics 78(1):R1–R11

    Google Scholar 

  • Zhou H, Tian Y, Ye Y (2014) Dynamic deconvolution of seismic data based on generalized S-transform. J Appl Geophys 108:1–11

    Google Scholar 

  • Zhou H, Wang C, Marfurt K, Jiang Y, Bi J (2016) Enhancing the resolution of non-stationary seismic data using improved time–frequency spectral modeling. Geophys J Int 205(1):203–219

    Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Chengdu University of Technology, No. PLC2020026), the National Natural Science Foundation of China (No. 42004114), Natural Science Foundation of Jiangxi Province (No. 20202BAB211010) and Public Welfare Geological Project Of Anhui Province (No. 2018-g-1-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaju Hao.

Additional information

Communicated by Michal Malinowski (CO-EDITOR-IN-CHIEF)\Sanyi Yuan (ASSOCIATE EDITOR).

Appendices

Appendix 1

Reformulation of NCM Based on Toeplitz structure constraint

Since W is a Toeplitz matrix, it can be written as

$${\mathbf{W = }}\left[ {\begin{array}{*{20}c} {w_{0} } & {w_{ - 1} } & \cdots & {w_{ - J} } \\ {w_{1} } & {w_{0} } & \cdots & {w_{ - J + 1} } \\ \vdots & \vdots & \ddots & \vdots \\ {w_{J} } & {w_{J - 1} } & \cdots & {w_{0} } \\ \end{array} } \right]$$
(35)

Therefore, \({\mathbf{w}} = \left[ {w_{ - J} ,w_{ - J + 1} , \ldots ,w_{0} , \ldots w_{J} } \right]^{T}\) can represent the time domain SW. Then, we rewrite W as

$${\mathbf{W}} = \sum\limits_{n = - J}^{J} {w_{n} {\mathbf{I}}_{n} }$$
(36)

where \({\mathbf{I}}_{n}\) is a shift matrix whose elements are zero except that the \(n^{th}\) sub-diagonal is one, for example \({\mathbf{I}}_{0} = \left[ {\begin{array}{*{20}c} 1 & {} & {} \\ {} & \ddots & {} \\ {} & {} & 1 \\ \end{array} } \right],\begin{array}{*{20}c} {} \\ \end{array} {\mathbf{I}}_{ - 1} = \left[ {\begin{array}{*{20}c} 0 & 1 & {} & {} \\ {} & \ddots & \ddots & {} \\ {} & {} & \ddots & 1 \\ {} & {} & {} & 0 \\ \end{array} } \right],\begin{array}{*{20}c} {} \\ \end{array} {\mathbf{I}}_{1} = \left[ {\begin{array}{*{20}c} 0 & {} & {} & {} \\ 1 & \ddots & {} & {} \\ {} & \ddots & \ddots & {} \\ {} & {} & 1 & 0 \\ \end{array} } \right]\). Substituting Eq. (36) into Eq. (27), we can obtain the following formula deduction process:

$$\begin{gathered} {\mathbf{b}}_{3} = vec({\mathbf{S}}){\mathbf = }vec\left( {\sum\limits_{n = - J}^{J} {w_{n} {\mathbf{I}}_{n} {\overline{\mathbf{R}}}} } \right){\mathbf{ + }}vec({\mathbf{N}}) = w_{n} \sum\limits_{n = - J}^{J} {(vec({\mathbf{B}}_{n} ))} + {\mathbf{n}} \hfill \\ = [vec({\mathbf{B}}_{ - J} )|vec({\mathbf{B}}_{ - J + 1} )| \cdots |vec({\mathbf{B}}_{0} )| \cdots |vec({\mathbf{B}}_{J} )]{\mathbf{w}} + {\mathbf{n}} \hfill \\ = {\mathbf{A}}_{3} {\mathbf{w}} + {\mathbf{n}} \hfill \\ \end{gathered}$$
(37)

where \({\mathbf{B}}_{n} = {\mathbf{I}}_{n} {\overline{\mathbf{R}}}\); \({\mathbf{A}}_{3}\) is a reformulated matrix which is expressed by

$${\mathbf{A}}_{3} = [vec({\mathbf{B}}_{ - J} )|vec({\mathbf{B}}_{ - J + 1} )| \cdots |vec({\mathbf{B}}_{0} )| \cdots |vec({\mathbf{B}}_{J} )]$$
(38)

Appendix 2

Split Bregman method for solving hybrid sparse constraint problem

Here, we rewrite Eq. (33):

$${\mathbf{z}} = \arg \mathop {min}\limits_{{\mathbf{z}}} \{ {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{y}} - {\mathbf{Az}}} \right\|_{2}^{2} + \mu |\varphi ({\mathbf{z}})|_{1} + \kappa |{\mathbf{Cz}}|_{1} \} \begin{array}{*{20}c} {} \\ \end{array} s.t.\begin{array}{*{20}c} {} \\ \end{array} {\mathbf{z}}_{{{\text{low}}}} \le {\mathbf{z}} \le {\mathbf{z}}_{{{\text{up}}}}$$
(39)

Then, we define \(|({\mathbf{d}}_{x} ,{\mathbf{d}}_{y} )|_{1} = \left| {\sqrt {({\mathbf{D}}_{x} {\mathbf{m}})^{2} + ({\mathbf{D}}_{y} {\mathbf{m}})^{2} } } \right|_{1}\), \({\mathbf{d}}_{x} = {\mathbf{D}}_{x} {\mathbf{z}}\), \({\mathbf{d}}_{y} = {\mathbf{D}}_{y} {\mathbf{z}}\) and \({\mathbf{d}}_{c} = {\mathbf{Cz}}\). Therefore, Eq. (39) can be iteratively solved by (Goldstein and Osher 2009)

$$\begin{gathered} ({\mathbf{z}}^{ik + 1} ,{\mathbf{d}}_{x}^{ik + 1} {,}{\mathbf{d}}_{y}^{ik + 1} {,}{\mathbf{d}}_{c}^{ik + 1} ) = \arg \mathop {min}\limits_{{{\mathbf{z}},{\mathbf{d}}_{x} {,}{\mathbf{d}}_{y} {,}{\mathbf{c}}}} \{ \mu |({\mathbf{d}}_{x} {,}{\mathbf{d}}_{y} )|_{1} + \kappa |{\mathbf{d}}_{c} |_{1} + {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{y}} - {\mathbf{Az}}} \right\|_{2}^{2} \hfill \\ + {\eta \mathord{\left/ {\vphantom {\eta 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{d}}_{c} - {\mathbf{Cz}} - {\mathbf{b}}_{c}^{ik} } \right\|_{2}^{2} + {\nu \mathord{\left/ {\vphantom {\nu 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{d}}_{x} - {\mathbf{D}}_{x} {\mathbf{z}} - {\mathbf{b}}_{x}^{ik} } \right\|_{2}^{2} + {\nu \mathord{\left/ {\vphantom {\nu 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{d}}_{y} - {\mathbf{D}}_{y} {\mathbf{z}} - {\mathbf{b}}_{y}^{ik} } \right\|_{2}^{2} \} \begin{array}{*{20}c} {} \\ \end{array} s.t.\begin{array}{*{20}c} {} \\ \end{array} {\mathbf{z}}_{{{\text{low}}}} \le {\mathbf{z}} \le {\mathbf{z}}_{{{\text{up}}}} \hfill \\ \end{gathered}$$
(40)
$${\mathbf{b}}_{c}^{ik + 1} = {\mathbf{b}}_{c}^{ik} + ({\mathbf{Cz}}^{ik + 1} - {\mathbf{d}}_{c}^{ik + 1} ),$$
(41)
$${\mathbf{b}}_{x}^{ik + 1} = {\mathbf{b}}_{x}^{ik} + ({\mathbf{D}}_{x} {\mathbf{z}}^{ik + 1} - {\mathbf{d}}_{x}^{ik + 1} ),$$
(42)
$${\mathbf{b}}_{y}^{ik + 1} = {\mathbf{b}}_{y}^{ik} + ({\mathbf{D}}_{y} {\mathbf{z}}^{ik + 1} - {\mathbf{d}}_{y}^{ik + 1} ).$$
(43)

where “ik” denotes the iteration number; \(\eta\) and \(\nu\) are regularization parameters. Also, decoupling the l1 and l2 norm in Eq. (40), we will yield

$$\begin{aligned} {\mathbf{z}}^{ik + 1} & = \arg \mathop {min}\limits_{{\mathbf{z}}} \{ {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{y}} - {\mathbf{Az}}} \right\|_{2}^{2} + \{ {\eta \mathord{\left/ {\vphantom {\eta 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{d}}_{c}^{ik} - {\mathbf{Cz}} - {\mathbf{b}}_{c}^{ik} } \right\|_{2}^{2} + {\nu \mathord{\left/ {\vphantom {\nu 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{d}}_{x}^{ik} - {\mathbf{D}}_{x} {\mathbf{z}} - {\mathbf{b}}_{x}^{ik} } \right\|_{2}^{2} \\ & \quad + {\nu \mathord{\left/ {\vphantom {\nu 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{d}}_{y}^{ik} - {\mathbf{D}}_{y} {\mathbf{z}} - {\mathbf{b}}_{y}^{ik} } \right\|_{2}^{2} \} \begin{array}{*{20}c} {} \\ \end{array} s.t.\begin{array}{*{20}c} {} \\ \end{array} {\mathbf{z}}_{{{\text{low}}}} \le {\mathbf{z}} \le {\mathbf{z}}_{{{\text{up}}}} \\ \end{aligned}$$
(44)
$${\mathbf{d}}_{c}^{ik + 1} = \arg \mathop {min}\limits_{{{\mathbf{d}}_{c} }} \{ \kappa |{\mathbf{d}}_{c} |_{1} + {\eta \mathord{\left/ {\vphantom {\eta 2}} \right. \kern-\nulldelimiterspace} 2}\left\| {{\mathbf{d}}_{c} - {\mathbf{Cz}}^{ik + 1} - {\mathbf{b}}_{c}^{ik} } \right\|_{2}^{2} \}$$
(45)
$$({\mathbf{d}}_{x}^{ik + 1} {,}{\mathbf{d}}_{y}^{ik + 1} ) = \arg \mathop {\min }\limits_{{{\mathbf{d}}_{x} {,}{\mathbf{d}}_{y} }} \{ \mu |({\mathbf{d}}_{x} {,}{\mathbf{d}}_{y} )|_{1} + {\nu \mathord{\left/ {\vphantom {\nu 2}} \right. \kern-\nulldelimiterspace} 2}|{\mathbf{d}}_{x} - {\mathbf{D}}_{x} {\mathbf{z}}^{ik + 1} - {\mathbf{b}}_{x}^{ik} |_{2}^{2} + {\nu \mathord{\left/ {\vphantom {\nu 2}} \right. \kern-\nulldelimiterspace} 2}|{\mathbf{d}}_{y} - {\mathbf{D}}_{y} {\mathbf{z}}^{ik + 1} - {\mathbf{b}}_{y}^{ik} |_{2}^{2} \}$$
(46)

Now, we have split the l1 and l2 penalty terms and yielded three simple subproblems. Equation (B3a) can be solved via the following linear equation with inequality constraint:

$$({\mathbf{A}}^{T} {\mathbf{A}} + \eta {\mathbf{C}}^{T} {\mathbf{C}} + \nu {\mathbf{D}}_{x}^{T} {\mathbf{D}}_{x} + \nu {\mathbf{D}}_{y}^{T} {\mathbf{D}}_{y} ){\mathbf{z}}^{ik + 1} = {\mathbf{U}}^{ik} \begin{array}{*{20}c} {} \\ \end{array} s.t.\begin{array}{*{20}c} {} \\ \end{array} {\mathbf{z}}_{low} \le {\mathbf{z}} \le {\mathbf{z}}_{up}$$
(47)

where \({\mathbf{C}}^{T} {\mathbf{C}} = {\mathbf{I}}\) is an identity matrix; \({\mathbf{U}}^{ik} = {\mathbf{A}}^{T} {\mathbf{y}} - \eta {\mathbf{C}}^{T} ({\mathbf{b}}_{c}^{ik} - {\mathbf{d}}_{c}^{ik} ) - \nu {\mathbf{D}}_{x}^{T} ({\mathbf{b}}_{x}^{ik} - {\mathbf{d}}_{x}^{ik} ) - \nu {\mathbf{D}}_{y}^{T} ({\mathbf{b}}_{y}^{ik} - {\mathbf{d}}_{y}^{ik} )\). The bound constrained problem in Eq. (42) is solved by bounded variable least-squares (BVLS) algorithm (Stark and Parker 1995). Both Eq. (41b) and (41c) are standard l1 norm based denoising problems whose solutions can be explicitly expressed by shrinkage formulas (Goldstein and Osher 2009):

$${\mathbf{d}}_{c}^{ik + 1} = \max \{ {{\varvec{\uprho}}}_{1} - {\kappa \mathord{\left/ {\vphantom {\kappa \eta }} \right. \kern-\nulldelimiterspace} \eta },{\mathbf{0}}\} \circ {\text{sig}}n({{\varvec{\uprho}}}_{1} )$$
(48)
$${\mathbf{d}}_{x}^{ik + 1} = \max \{ 1 - {\mu \mathord{\left/ {\vphantom {\mu {(\nu {{\varvec{\uprho}}}_{2} )}}} \right. \kern-\nulldelimiterspace} {(\nu {{\varvec{\uprho}}}_{2} )}},{\mathbf{0}}\} \circ ({\mathbf{D}}_{x} {\mathbf{z}}^{ik + 1} + {\mathbf{b}}_{x}^{ik} )$$
(49)
$${\mathbf{d}}_{y}^{ik + 1} = \max \{ 1 - {\mu \mathord{\left/ {\vphantom {\mu {(\nu {{\varvec{\uprho}}}_{2} )}}} \right. \kern-\nulldelimiterspace} {(\nu {{\varvec{\uprho}}}_{2} )}},{\mathbf{0}}\} \circ ({\mathbf{D}}_{y} {\mathbf{z}}^{ik + 1} + {\mathbf{b}}_{y}^{ik} )$$
(50)

where symbol “\(\circ\)” denotes Hadamard product between two vectors, \({{\varvec{\uprho}}}_{1} = {\mathbf{Cz}}^{it + 1} + {\mathbf{b}}_{c}^{it}\) and \({{\varvec{\uprho}}}_{2} = \sqrt {({\mathbf{D}}_{x} {\mathbf{z}}^{it + 1} + {\mathbf{b}}_{x}^{it} )^{2} + ({\mathbf{D}}_{y} {\mathbf{z}}^{it + 1} + {\mathbf{b}}_{y}^{it} )^{2} }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Wen, X., Zhang, H. et al. Nonstationary seismic inversion: joint estimation for acoustic impedance, attenuation factor and source wavelet. Acta Geophys. 69, 459–481 (2021). https://doi.org/10.1007/s11600-021-00555-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-021-00555-z

Keywords

Navigation