Skip to main content
Log in

Detection of Novel BEST1 Variations in Autosomal Recessive Bestrophinopathy Using Third-generation Sequencing

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Autosomal recessive bestrophinopathy (ARB), a retinal degenerative disease, is characterized by central visual loss, yellowish multifocal diffuse subretinal deposits, and a dramatic decrease in the light peak on electrooculogram. The potential pathogenic mechanism involves mutations in the BEST1 gene, which encodes Ca2+-activated Cl channels in the retinal pigment epithelium (RPE), resulting in degeneration of RPE and photoreceptor. In this study, the complete clinical characteristics of two Chinese ARB families were summarized.

Methods

Pacific Biosciences (PacBio) single-molecule real-time (SMRT) sequencing was performed on the probands to screen for disease-causing gene mutations, and Sanger sequencing was applied to validate variants in the patients and their family members.

Results

Two novel mutations, c.202T>C (chr11:61722628, p.Y68H) and c.867+97G>A, in the BEST1 gene were identified in the two Chinese ARB families. The novel missense mutation BEST1 c.202T>C (p.Y68H) resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1. Another novel variant, BEST1 c.867+97G>A (chr11:61725867), located in intron 7, might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.

Conclusion

Our findings represent the first use of third-generation sequencing (TGS) to identify novel BEST1 mutations in patients with ARB, indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes. The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marquardt A, Stöhr H, Passmore LA, et al. Mutations in a novel gene, VMD2, encoding a protein of unknown properties cause juvenile-onset vitelliform macular dystrophy (Best’s disease). Hum Mol Genet, 1998,7(9):1517–1525

    Article  CAS  PubMed  Google Scholar 

  2. Marmorstein AD, Marmorstein LY, Rayborn M, et al. Bestrophin, the product of the Best vitelliform macular dystrophy gene (VMD2), localizes to the basolateral plasma membrane of the retinal pigment epithelium. Proc Natl Acad Sci USA, 2000,97(23):12758–12763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petrukhin K, Koisti MJ, Bakall B, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet, 1998,19(3):241–247

    Article  CAS  PubMed  Google Scholar 

  4. Burgess R, Millar ID, Leroy BP, et al. Biallelic mutation of BEST1 causes a distinct retinopathy in humans. Am J Hum Genet, 2008,82(1):19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allikmets R, Seddon JM, Bernstein PS, et al. Evaluation of the Best disease gene in patients with age-related macular degeneration and other maculopathies. Hum Genet, 1999,104(6):449–453

    Article  CAS  PubMed  Google Scholar 

  6. Yardley J, Leroy BP, Hart-Holden N, et al. Mutations of VMD2 splicing regulators cause nanophthalmos and autosomal dominant vitreoretinochoroidopathy (ADVIRC). Invest Ophthalmol Vis Sci, 2004,45(10):3683–3689

    Article  PubMed  Google Scholar 

  7. Davidson AE, Millar ID, Urquhart JE, et al. Missense mutations in a retinal pigment epithelium protein, bestrophin-1, cause retinitis pigmentosa. Am J Hum Genet, 2009,85(5):581–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Habibi I, Falfoul Y, Todorova MG, et al. Clinical and Genetic Findings of Autosomal Recessive Bestrophinopathy (ARB). Genes (Basel), 2019,10(12):953

    Article  CAS  PubMed  Google Scholar 

  9. Poplin R, Chang PC, Alexander D, et al. A universal SNP and small-indel variant caller using deep neural networks. Nat Biotechnol, 2018,36(10):983–987

    Article  CAS  PubMed  Google Scholar 

  10. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res, 2010,38(16):e164

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tian R, Yang G, Wang J, et al. Screening for BEST1 gene mutations in Chinese patients with bestrophinopathy. Mol Vis, 2014,20:1594–1604

    PubMed  PubMed Central  Google Scholar 

  12. Petersen BS, Fredrich B, Hoeppner MP, et al. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet, 2017,18(1):14

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salzberg SL, Yorke JA. Beware of mis-assembled genomes. Bioinformatics, 2005,21(24):4320–4321

    Article  CAS  PubMed  Google Scholar 

  14. Guan P, Sung WK. Structural variation detection using next-generation sequencing data: A comparative technical review. Methods, 2016,102:36–49

    Article  CAS  PubMed  Google Scholar 

  15. Bayega A, Wang YC, Oikonomopoulos S, et al. Transcript Profiling Using Long-Read Sequencing Technologies. Methods Mol Biol, 2018,1783:121–147

    Article  PubMed  Google Scholar 

  16. Steijger T, Abril JF, Engström PG, et al. Assessment of transcript reconstruction methods for RNA-seq. Nat Methods, 2013,10(12):1177–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Conlin LK, Aref-Eshghi E, McEldrew DA, et al. Long-read sequencing for molecular diagnostics in constitutional genetic disorders. Hum Mutat, 2022,43(11):1531–1544

    Article  PubMed  PubMed Central  Google Scholar 

  18. Milenkovic VM, Rivera A, Horling F, et al. Insertion and topology of normal and mutant bestrophin-1 in the endoplasmic reticulum membrane. J Biol Chem, 2007,282(2):1313–1321

    Article  CAS  PubMed  Google Scholar 

  19. Milenkovic A, Milenkovic VM, Wetzel CH, et al. BEST1 protein stability and degradation pathways differ between autosomal dominant Best disease and autosomal recessive bestrophinopathy accounting for the distinct retinal phenotypes. Hum Mol Genet, 2018,27(9):1630–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marmorstein AD, Kinnick TR, Stanton JB, et al. Bestrophin-1 influences transepithelial electrical properties and Ca2+ signaling in human retinal pigment epithelium. Mol Vis, 2015,21:347–359

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rosenthal R, Bakall B, Kinnick T, et al. Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells. FASEB J, 2006,20(1):178–180

    Article  CAS  PubMed  Google Scholar 

  22. Strauß O, Müller C, Reichhart N, et al. The role of bestrophin-1 in intracellular Ca(2+) signaling. Adv Exp Med Biol, 2014,801:113–119

    Article  PubMed  Google Scholar 

  23. Gao FJ, Qi YH, Hu FY, et al. Mutation spectrum of the bestrophin-1 gene in a large Chinese cohort with bestrophinopathy. Br J Ophthalmol, 2020,104(6):846–851

    Article  PubMed  Google Scholar 

  24. Qu Z, Hartzell C. Determinants of anion permeation in the second transmembrane domain of the mouse bestrophin-2 chloride channel. J Gen Physiol, 2004,124(4):371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Uggenti C, Briant K, Streit AK, et al. Restoration of mutant bestrophin-1 expression, localisation and function in a polarised epithelial cell model. Dis Model Mech, 2016,9(11):1317–1328

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Davidson AE, Millar ID, Burgess-Mullan R, et al. Functional characterization of bestrophin-1 missense mutations associated with autosomal recessive bestrophinopathy. Invest Ophthalmol Vis Sci, 2011,52(6):3730–3736

    Article  CAS  PubMed  Google Scholar 

  27. Johnson AA, Bachman LA, Gilles BJ, et al. Autosomal Recessive Bestrophinopathy Is Not Associated With the Loss of Bestrophin-1 Anion Channel Function in a Patient With a Novel BEST1 Mutation. Invest Ophthalmol Vis Sci, 2015,56(8):4619–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson AA, Lee YS, Chadburn AJ, et al. Disease-causing mutations associated with four bestrophinopathies exhibit disparate effects on the localization, but not the oligomerization, of Bestrophin-1. Exp Eye Res, 2014,121:74–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kinnick TR, Mullins RF, Dev S, et al. Autosomal recessive vitelliform macular dystrophy in a large cohort of vitelliform macular dystrophy patients. Retina, 2011,31(3):581–595

    Article  CAS  PubMed  Google Scholar 

  30. Gerth C, Zawadzki RJ, Werner JS, et al. Detailed analysis of retinal function and morphology in a patient with autosomal recessive bestrophinopathy (ARB). Doc Ophthalmol, 2009,118(3):239–246

    Article  PubMed  Google Scholar 

  31. Boon CJ, van den Born LI, Visser L, et al. Autosomal recessive bestrophinopathy: differential diagnosis and treatment options. Ophthalmology, 2013,120(4):809–820

    Article  PubMed  Google Scholar 

  32. Xiao Q, Hartzell HC, Yu K. Bestrophins and retinopathies. Pflugers Arch, 2010,460(2):559–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jin.

Ethics declarations

The authors declare that there are no conflicts of interest with any financial organization, corporation or individual that can inappropriately influence this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jx., Meng, Lr., Hou, Bk. et al. Detection of Novel BEST1 Variations in Autosomal Recessive Bestrophinopathy Using Third-generation Sequencing. CURR MED SCI 44, 419–425 (2024). https://doi.org/10.1007/s11596-024-2865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-024-2865-3

Key words

Navigation