Skip to main content
Log in

Methods, Mechanisms, and Application Prospects for Enhancing Extracellular Vesicle Uptake

  • Review Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Extracellular vesicles (EVs) are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity, natural functionality, and excellent biocompatibility. However, limitations such as low uptake efficiency, insufficient production, and inhomogeneous performance undermine their potential. To address these issues, numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades. In this review, we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake. In addition, we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem, 2019,88(1):487–514

    Article  CAS  PubMed  Google Scholar 

  2. El Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov, 2013,12(5):347–357

    Article  CAS  PubMed  Google Scholar 

  3. Ettelaie C, Collier MEW, Maraveyas A, et al. Characterization of physical properties of tissue factor-containing microvesicles and a comparison of ultracentrifuge-based recovery procedures. J Extracell Vesicles, 2014,3(1):1

    Article  Google Scholar 

  4. Battistelli M, Falcieri E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. Biology, 2020,9(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol, 2007,35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol, 2019,21(1):9–17

    Article  CAS  PubMed  Google Scholar 

  7. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014,30:255–289

    Article  CAS  PubMed  Google Scholar 

  8. Maas SLN, Breakefield XO, Weaver AM. Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends Cell Biol, 2017,27(3):172–188

    Article  CAS  PubMed  Google Scholar 

  9. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol, 2016,36(3):301–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nolte-’T Hoen ENM, Buschow SI, Anderton SM, et al. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood, 2009,113(9):1977–1981

    Article  PubMed  Google Scholar 

  11. Zhang B, Wang M, Gong A, et al. HucMSC-Exosome Mediated-Wnt4 Signaling Is Required for Cutaneous Wound Healing. Stem Cells, 2015,33(7):2158–2168

    Article  CAS  PubMed  Google Scholar 

  12. Cui X, He Z, Liang Z, et al. Exosomes From Adipose-derived Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Wnt/β-Catenin Signaling Pathway. J Cardiovasc Pharmacol, 2017,70(4):225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ratajczak J, Miekus K, Kucia M, et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia, 2006,20(5):847–856

    Article  CAS  PubMed  Google Scholar 

  14. Men Y, Yelick J, Jin S, et al. Exosome reporter mice reveal the involvement of exosomes in mediating neuron to astroglia communication in the CNS. Nat Commun, 2019,10(1):4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest, 2014,124(5):2136–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zamani P, Fereydouni N, Butler AE, et al. The therapeutic and diagnostic role of exosomes in cardiovascular diseases. Trends Cardiovasc Med, 2019,29(6):313–323

    Article  CAS  PubMed  Google Scholar 

  17. Howitt J, Hill AF. Exosomes in the Pathology of Neurodegenerative Diseases. J Biol Chem, 2016,291(52):26589–26597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen N, Sun XY, Ding ZC, et al. Small Extracellular Vesicles Secreted by Peri-urethral Tissues Regulate Fibroblast Function and Contribute to the Pathogenesis of Female Stress Urinary Incontinence. Curr Med Sci, 2023,43(4):803–810

    Article  CAS  PubMed  Google Scholar 

  19. Duan CY, Fan WL, Chen F. Roles of Optineurin and Extracellular Vesicles in Glaucomatous Retinal Cell Loss. Curr Med Sci, 2023,43(2):367–375

    Article  CAS  PubMed  Google Scholar 

  20. Osaki M, Okada F. Exosomes and Their Role in Cancer Progression. Yonago Acta Med, 2019,62(2):182–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deng Z, Liu Y, Liu C, et al. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology, 2009,50(5):1412–1420

    Article  CAS  PubMed  Google Scholar 

  22. Nakase I, Kobayashi NB, Takatani-Nakase T, et al. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep, 2015,5(1):10300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakase I, Futaki S. Combined treatment with a pH-sensitive fusogenic peptide and cationic lipids achieves enhanced cytosolic delivery of exosomes. Sci Rep, 2015,5(1):10112

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu H, Liao C, Liang S, et al. A Novel Peptide-Equipped Exosomes Platform for Delivery of Antisense Oligonucleotides. ACS Appl Mater Interfaces, 2021,13(9):10760–10767

    Article  CAS  PubMed  Google Scholar 

  25. Martínez-Santillán A, González-Valdez J. Novel Technologies for Exosome and Exosome-like Nanovesicle Procurement and Enhancement. Biomedicines, 2023,11(5):1487

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tran NH, Nguyen DD, Nguyen NM, et al. Dualtargeting exosomes for improved drug delivery in breast cancer. Nanomedrcme (Lond), 2023,18(7):599–611

    Article  CAS  Google Scholar 

  27. Luan X, Sansanaphongpricha K, Myers I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol Sin, 2017,38(6):754–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tian T, Wang Y, Wang H, et al. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem, 2010,111(2):488–496

    Article  CAS  PubMed  Google Scholar 

  29. Tian T, Zhu YL, Hu FH, et al. Dynamics of exosome internalization and trafficking. J Cell Physiol, 2013,228(7):1487–1495

    Article  CAS  PubMed  Google Scholar 

  30. Sokolova V, Ludwig A, Hornung S, et al. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids and Surfaces B: Biointerfaces, 2011,87(1):146–150

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi Y, Nishikawa M, Shinotsuka H, et al. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J Biotechnol, 2013,165(2):77–84

    Article  CAS  PubMed  Google Scholar 

  32. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol, 2018,19(4):213–228

    Article  CAS  PubMed  Google Scholar 

  33. Gyorgy B, Hung ME, Breakefield XO, et al. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol, 2015,55:439–464

    Article  CAS  PubMed  Google Scholar 

  34. Gurung S, Perocheau D, Touramanidou L, et al. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal, 2021,19(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parolini I, Federici C, Raggi C, et al. Microenvironmental pH Is a Key Factor for Exosome Traffic in Tumor Cells. J Biol Chem, 2009,284(49):34211–34222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 2012,119(3):756–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morelli AE, Larregina AT, Shufesky WJ, et al. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood, 2004,104(10):3257–3266

    Article  CAS  PubMed  Google Scholar 

  38. Escrevente C, Keller S, Altevogt P, et al. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer, 2011,11(1):108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Araldi RP, Delvalle DA, Da Costa VR, et al. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells, 2023,12(17):2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gonda A, Kabagwira J, Senthil GN, et al. Internalization of Exosomes through Receptor-Mediated Endocytosis. Mol Cancer Res, 2019,17(2):337–347

    Article  CAS  PubMed  Google Scholar 

  41. Mckelvey KJ, Powell KL, Ashton AW, et al. Exosomes: Mechanisms of Uptake. J Circ Biomark, 2015,4:7

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mettlen M, Chen P, Srinivasan S, et al. Regulation of Clathrin-Mediated Endocytosis. Annu Rev Biochem, 2018,87(1):871–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kiss AL, Botos E. Endocytosis via caveolae: alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J Cell Mol Med, 2009,13(7):1228–1237

    Article  PubMed  PubMed Central  Google Scholar 

  44. Barres C, Blanc L, Bette-Bobillo P, et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood, 2010,115(3):696–705

    Article  CAS  PubMed  Google Scholar 

  45. Nanbo A, Kawanishi E, Yoshida R, et al. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J Virol, 2013,87(18):10334–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Menck K, Klemm F, Gross JC, et al. Induction and transport of Wnt 5a during macrophage-induced malignant invasion is mediated by two types of extracellular vesicles. Oncotarget, 2013,4(11):2057–2066

    Article  PubMed  PubMed Central  Google Scholar 

  47. Izquierdo-Useros N, Naranjo-Gómez M, Archer J, et al. Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood, 2009,113(12):2732–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. The Journal of Cell Biology, 2003,161(4):673–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Doherty GJ, Mcmahon HT. Mechanisms of endocytosis. Annu Rev Biochem, 2009,78:857–902

    Article  CAS  PubMed  Google Scholar 

  50. Feng D, Zhao W, Ye Y, et al. Cellular Internalization of Exosomes Occurs Through Phagocytosis. Traffic, 2010,11(5):675–687

    Article  CAS  PubMed  Google Scholar 

  51. Gordon S. Phagocytosis: An Immunobiologic Process. Immunity, 2016,44(3):463–475

    Article  CAS  PubMed  Google Scholar 

  52. Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol, 2011,89(8):836–843

    Article  CAS  PubMed  Google Scholar 

  53. Heusermann W, Hean J, Trojer D, et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol, 2016,213(2):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mattila PK, Lappalainen P. Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Biol, 2008,9(6):446–454

    Article  CAS  PubMed  Google Scholar 

  55. Lehmann MJ, Sherer NM, Marks CB, et al. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol, 2005,170(2):317–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Barrès C, Blanc L, Bette-Bobillo P, et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood, 2010,115(3):696–705

    Article  PubMed  Google Scholar 

  57. Fitzner D, Schnaars M, van Rossum D, et al. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci, 2011,124(3):447–458

    Article  CAS  PubMed  Google Scholar 

  58. Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-Triggered Transfer of Exosomes Mediates Oligod-endrocyte-Neuron Communication. PLoS Biol, 2013,11(7):e1001604

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nanbo A, Kawanishi E, Yoshida R, et al. Exosomes Derived from Epstein-Barr Virus-Infected Cells Are Internalized via Caveola-Dependent Endocytosis and Promote Phenotypic Modulation in Target Cells. J Virol, 2013,87(18):10334–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Svensson KJ, Christianson HC, Wittrup A, et al. Exosome Uptake Depends on ERK1/2-Heat Shock Protein 27 Signaling and Lipid Raft-mediated Endocytosis Negatively Regulated by Caveolin-1. J Biol Chem, 2013,288(24):17713–17724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rejman J, Oberle V, Zuhorn IS, et al. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J, 2004,377 (Pt 1):159–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mcmahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol, 2011,12(8):517–533

    Article  CAS  PubMed  Google Scholar 

  63. Wang Z, Tiruppathi C, Cho J, et al. Delivery of nanoparticle: complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life, 2011,63(8):659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Akinc A, Battaglia G. Exploiting endocytosis for nanomedicines. Cold Spring Harb Perspect Biol, 2013,5(11):a16980

    Article  Google Scholar 

  65. Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, et al. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release, 2017,266:100–108

    Article  CAS  PubMed  Google Scholar 

  66. Ye H, Wang F, Xu G, et al. Advancements in engineered exosomes for wound repair: current research and future perspectives. Front Bioeng Biotechnol, 2023,11:1301362

    Article  PubMed  PubMed Central  Google Scholar 

  67. Nakagawa Y, Arafiles JVV, Kawaguchi Y, et al. Stearylated Macropinocytosis-Inducing Peptides Facilitating the Cellular Uptake of Small Extracellular Vesicles. Bioconjug Chem, 2022,33(5):869–880

    Article  CAS  PubMed  Google Scholar 

  68. Nakase I, Noguchi K, Fujii I, et al. Vectorization of biomacromolecules into cells using extracellular vesicles with enhanced internalization induced by macropinocytosis. Sci Rep, 2016,6(1):34937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hirase S, Aoki A, Hattori Y, et al. Dodecaborate-Encapsulated Extracellular Vesicles with Modification of Cell-Penetrating Peptides for Enhancing Macropinocytotic Cellular Uptake and Biological Activity in Boron Neutron Capture Therapy. Mol Pharm, 2022,19(4):1135–1145

    Article  CAS  PubMed  Google Scholar 

  70. Noguchi K, Obuki M, Sumi H, et al. Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery. Mol Pharm, 2021,18(9):3290–3301

    Article  CAS  PubMed  Google Scholar 

  71. Shimoda A, Miura R, Tateno H, et al. Assessment of Surface Glycan Diversity on Extracellular Vesicles by Lectin Microarray and Glycoengineering Strategies for Drug Delivery Applications. Small Methods, 2022,6(2):e2100785

    Article  PubMed  Google Scholar 

  72. Nishida-Aoki N, Tominaga N, Kosaka N, et al. Altered biodistribution of deglycosylated extracellular vesicles through enhanced cellular uptake. J Extracell Vesicles, 2020,9(1):1713527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhan Q, Yi K, Li X, et al. Phosphatidylcholine-Engineered Exosomes for Enhanced Tumor Cell Uptake and Intracellular Antitumor Drug Delivery. Macromol Biosci, 2021,21(8):e2100042

    Article  PubMed  Google Scholar 

  74. Zou J, Shi M, Liu X, et al. Aptamer-Functionalized Exosomes: Elucidating the Cellular Uptake Mechanism and the Potential for Cancer-Targeted Chemotherapy. Anal Chem, 2019,91(3):2425–2430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hade MD, Suire CN, Suo Z. An Effective Peptide-Based Platform for Efficient Exosomal Loading and Cellular Delivery of a microRNA. ACS Appl Mater Interfaces, 2023,15(3):3851–3866

    Article  CAS  PubMed  Google Scholar 

  76. Liao Z, Liu H, Ma L, et al. Engineering Extracellular Vesicles Restore the Impaired Cellular Uptake and Attenuate Intervertebral Disc Degeneration. ACS Nano, 2021,15(9):14709–14724

    Article  CAS  PubMed  Google Scholar 

  77. Meyer C, Losacco J, Stickney Z, et al. Pseudotyping exosomes for enhanced protein delivery in mammalian cells. Int J Nanomedicine, 2017,12:3153–3170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Temchura VV, Tenbusch M, Nchinda G, et al. Enhancement of immunostimulatory properties of exosomal vaccines by incorporation of fusion-competent G protein of vesicular stomatitis virus. Vaccine, 2008,26(29):3662–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hung ME, Leonard JN. Stabilization of Exosometargeting Peptides via Engineered Glycosylation. J Biol Chem, 2015,290(13):8166–8172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang J, Song H, Dong Y, et al. Surface Engineering of HEK293 Cell-Derived Extracellular Vesicles for Improved Pharmacokinetic Profile and Targeted Delivery of IL-12 for the Treatment of Hepatocellular Carcinoma. Int J Nanomedicine, 2023,18:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kelemen A, Carmi I, Oszvald Á, et al. IFITM1 expression determines extracellular vesicle uptake in colorectal cancer. Cell Mol Life Sci, 2021,78(21–22):7009–7024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang S, Guo M, Guo T, et al. DAL-1/4.1B promotes the uptake of exosomes in lung cancer cells via Heparan Sulfate Proteoglycan 2 (HSPG2). Mol Cell Biochem, 2022,477(1):241–254

    Article  CAS  PubMed  Google Scholar 

  83. Hazawa M, Tomiyama K, Saotome-Nakamura A, et al. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. Biochem Biophys Res Commun, 2014,446(4):1165–1171

    Article  CAS  PubMed  Google Scholar 

  84. Mizuta R, Sasaki Y, Kawasaki R, et al. Magnetically Navigated Intracellular Delivery of Extracellular Vesicles Using Amphiphilic Nanogels. Bioconjug Chem, 2019,30(8):2150–2155

    Article  CAS  PubMed  Google Scholar 

  85. Gong C, Zhang X, Shi M, et al. Tumor Exosomes Reprogrammed by Low pH Are Efficient Targeting Vehicles for Smart Drug Delivery and Personalized Therapy against their Homologous Tumor. Adv Sci (Weinh), 2021,8(10):2002787

    Article  CAS  PubMed  Google Scholar 

  86. Kim H, Kang J, Mun D, et al. Calcium chloride enhances the delivery of exosomes. PLoS One, 2019,14(7):e220036

    Article  Google Scholar 

  87. Ferrero-Andrés A, Closa D, Roselló-Catafau J, et al. Polyethylene Glycol 35 (PEG35) Modulates Exosomal Uptake and Function. Polymers (Basel), 2020,12(12):3044

    Article  PubMed  Google Scholar 

  88. Ma S, Song L, Bai Y, et al. Improved intracellular delivery of exosomes by surface modification with fluorinated peptide dendrimers for promoting angiogenesis and migration of HUVECs. RSC Adv, 2023,13(17):11269–11277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Matsuki Y, Yanagawa T, Sumiyoshi H, et al. Modification of exosomes with carbonate apatite and a glycan polymer improves transduction efficiency and target cell selectivity. Biochem Biophys Res Commun, 2021,583:93–99

    Article  CAS  PubMed  Google Scholar 

  90. Takenaka T, Nakai S, Katayama M, et al. Effects of gefitinib treatment on cellular uptake of extracellular vesicles in EGFR-mutant non-small cell lung cancer cells. Int J Pharm, 2019,572:118762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao Z, Mcgill J, Gamero-Kubota P, et al. Microfluidic on-demand engineering of exosomes towards cancer immunotherapy. Lab Chip, 2019,19(10):1877–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bui S, Dancourt J, Lavieu G. Virus-Free Method to Control and Enhance Extracellular Vesicle Cargo Loading and Delivery. ACS Appl Bio Mater, 2023,6(3):1081–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu P, Tang Y, Jin C, et al. Neutrophil membrane engineered HucMSC sEVs alleviate cisplatin-induced AKI by enhancing cellular uptake and targeting. J Nanobiotechnology, 2022,20(1):353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hu S, Wang X, Li Z, et al. Platelet membrane and stem cell exosome hybrids enhance cellular uptake and targeting to heart injury. Nano Today, 2021,39:101210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shao J, Zaro J, Shen Y. Advances in Exosome-Based Drug Delivery and Tumor Targeting: From Tissue Distribution to Intracellular Fate. Int J Nanomedicine, 2020,15:9355–9371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gonda A, Kabagwira J, Senthil GN, et al. Exosomal survivin facilitates vesicle internalization. Oncotarget, 2018,9(79):34919–34934

    Article  PubMed  PubMed Central  Google Scholar 

  97. Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. The EMBO Journal, 2017,36(20):3012–3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Guan S, Li Q, Liu P, et al. Experimental immunology Umbilical cord blood-derived dendritic cells loaded with BGC823 tumor antigens and DC-derived exosomes stimulate efficient cytotoxic T-lymphocyte responses and antitumor immunity in vitro and in vivo. Cent Eur J Immunol, 2014,2(2):142–151

    Article  Google Scholar 

  99. Sobo-Vujanovic A, Munich S, Vujanovic NL. Dendritic-cell exosomes cross-present Toll-like receptor-ligands and activate bystander dendritic cells. Cell Immunol, 2014,289(1–2):119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Munich S, Sobo-Vujanovic A, Buchser WJ, et al. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology, 2014,1(7):1074–1083

    Article  Google Scholar 

  101. Zheng Y, Tu C, Zhang J, et al. Inhibition of multiple myeloma-derived exosomes uptake suppresses the functional response in bone marrow stromal cell. Int J Oncol, 2019,54(3):1061–1070

    CAS  PubMed  Google Scholar 

  102. Buschow SI, Nolte T Hoen ENM, Van Niel G, et al. MHC II in Dendritic Cells is Targeted to Lysosomes or T Cell-Induced Exosomes Via Distinct Multivesicular Body Pathways. Traffic, 2009,10(10):1528–1542

    Article  CAS  PubMed  Google Scholar 

  103. Verweij FJ, Bebelman MP, Jimenez CR, et al. Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J Cell Biol, 2018,217(3):1129–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Horibe S, Tanahashi T, Kawauchi S, et al. Mechanism of recipient cell-dependent differences in exosome uptake. BMC Cancer, 2018,18(1):47

    Article  PubMed  PubMed Central  Google Scholar 

  105. Eguchi S, Takefuji M, Sakaguchi T, et al. Cardiomyocytes capture stem cell-derived, anti-apoptotic microRNA-214 via clathrin-mediated endocytosis in acute myocardial infarction. J Biol Chem, 2019,294(31):11665–11674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Benmerah A, Bayrou M, Cerf-Bensussan N, et al. Inhibition of clathrin-coated pit assembly by an Eps15 mutant. J Cell Sci, 1999,112(9):1303–1311

    Article  CAS  PubMed  Google Scholar 

  107. Yoon JH, Ashktorab H, Smoot DT, et al. Uptake and tumor-suppressive pathways of exosome-associated GKN1 protein in gastric epithelial cells. Gastric Cancer, 2020,23(5):848–862

    Article  CAS  PubMed  Google Scholar 

  108. Koumangoye RB, Sakwe AM, Goodwin JS, et al. Detachment of Breast Tumor Cells Induces Rapid Secretion of Exosomes Which Subsequently Mediate Cellular Adhesion and Spreading. PLoS One, 2011,6(9):e24234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Skotland T, Hessvik NP, Sandvig K, et al. Exosomal lipid composition and the role of ether lipids and phosphoinositides in exosome biology. J Lipid Res, 2019,60(1):9–18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-fan Yang or Zhen-bing Chen.

Ethics declarations

The authors declare that there is no conflict of interest with any financial organization or corporation or individual that can inappropriately influence this work.

Author Zhen-bing CHEN is a member of the Editorial Board for Current Medical Science. The paper was handled by the other editors and has undergone rigorous peer review process. Author Zhen-bing CHEN was not involved in the journal’s review of, or decisions related to, this manuscript.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 82370838 and No. 82172221).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Yp., Jiang, T., Yang, Xf. et al. Methods, Mechanisms, and Application Prospects for Enhancing Extracellular Vesicle Uptake. CURR MED SCI 44, 247–260 (2024). https://doi.org/10.1007/s11596-024-2861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-024-2861-7

Key words

Navigation