Skip to main content
Log in

Glycogen Synthase Kinase-3β, NLRP3 Inflammasome, and Alzheimer’s Disease

  • Review
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most prevalent cause of dementia worldwide. Because of the progressive neurodegeneration, individual cognitive and behavioral functions are impaired, affecting the quality of life of millions of people. Although the exact pathogenesis of AD has not been fully elucidated, amyloid plaques, neurofibrillary tangles (NFTs), and sustaining neuroinflammation dominate its characteristics. As one of the major tau kinases leading to hyperphosphorylation and aggregation of tau, glycogen synthase kinase-3β (GSK-3β) has been drawing great attention in various AD studies. Another research focus of AD in recent years is the inflammasome, a multiprotein complex acting as a regulator in immunological reactions to exogenous and endogenous danger signals, of which the Nod-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome has been studied mostly in AD and proven to play a significant role in AD development by its activation and downstream effects such as caspase-1 maturation and interleukin (IL)-1β release. Studies have shown that the NLRP3 inflammasome is activated in a GSK-3β-dependent way and that inhibition of the NLRP3 inflammasome downregulates GSK-3β, suggesting that these two important proteins are closely related. This article reviews the respective roles of GSK-3β and the NLRP3 inflammasome in AD as well as their relationship and interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gauthier S, Webster C, Servaes S, eds. World Alzheimer Report 2022: Life after diagnosis: Navigating treatment, care and support. London: Alzheimer’s Disease International, 2022.

    Google Scholar 

  2. Takashima A. GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis JAD, 2006,9(3 Suppl):309–317

    Article  CAS  PubMed  Google Scholar 

  3. Kimura T, Ishiguro K, Hisanaga SI. Physiological and pathological phosphorylation of tau by Cdk5. Front Mol Neurosci, 2014,7:65

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jia L, Du Y, Chu L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study. Lancet Public Health, 2020,5(12):e661–e671

    Article  PubMed  Google Scholar 

  5. Tiraboschi P, Hansen LA, Masliah E, et al. Impact of APOE genotype on neuropathologic and neurochemical markers of Alzheimer disease. Neurology, 2004,62(11): 1977–1983

    Article  CAS  PubMed  Google Scholar 

  6. Peng X, Guo H, Zhang X, et al. TREM2 Inhibits Tau Hyperphosphorylation and Neuronal Apoptosis via the PI3K/Akt/GSK-3β Signaling Pathway In vivo and In vitro. Mol Neurobiol, 2023,60(5):2470–2485

    Article  CAS  PubMed  Google Scholar 

  7. Singh RB, Rastogi SS, Rao PV, et al. Diet and lifestyle guidelines and desirable levels of risk factors for the prevention of diabetes and its vascular complications in Indians: a scientific statement of The International College of Nutrition. Indian Consensus Group for the Prevention of Diabetes. J Cardiovasc Risk, 1997,4(3): 201–208

    Article  CAS  PubMed  Google Scholar 

  8. Parks AL, Curtis D. Presenilin diversifies its portfolio. Trends Genet, 2007,23(3):140–150

    Article  CAS  PubMed  Google Scholar 

  9. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer’s disease. Acta Neuropathol Commun, 2016,4(1):64

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cappuccio I, Calderone A, Busceti CL, et al. Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. J Neurosci Off J Soc Neurosci, 2005,25(10):2647–2657

    Article  CAS  Google Scholar 

  11. Yang Y, Zhang Z. Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer’s Disease. Front Aging Neurosci, 2020,12:110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bertrand FE. The cross-talk of NOTCH and GSK-3 signaling in colon and other cancers. Biochim Biophys Acta Mol Cell Res, 2020,1867(9):118738

    Article  CAS  PubMed  Google Scholar 

  13. Marathe S, Liu S, Brai E, et al. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ, 2015,22(11):1775–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shadfar S, Hwang CJ, Lim MS, et al. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res, 2015,38(12):2106–2119

    Article  CAS  PubMed  Google Scholar 

  15. Ising C, Venegas C, Zhang S, et al. NLRP3 in-flammasome activation drives tau pathology. Nature, 2019,575(7784):669–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heneka MT, Kummer MP, Stutz A, et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature, 2013,493(7434):674–678

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Wang R, Hu D, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer’s disease. Sci Adv, 2020,6(49):eabb8680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Zhao Y, Zhang J, et al. Mechanisms of NLRP3 Inflammasome Activation: Its Role in the Treatment of Alzheimer’s Disease. Neurochem Res, 2020,45(11):2560–2572

    Article  CAS  PubMed  Google Scholar 

  19. Amar S, Belmaker RH, Agam G. The possible involvement of glycogen synthase kinase-3 (GSK-3) in diabetes, cancer and central nervous system diseases. Curr Pharm Des, 2011,17(22):2264–2277

    Article  CAS  PubMed  Google Scholar 

  20. Tejeda-Muñoz N, Robles-Flores M. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer. IUBMB Life, 2015,67(12):914–922

    Article  PubMed  Google Scholar 

  21. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J, 1990,9(8):2431–2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Imahori K, Uchida T. Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem (Tokyo), 1997,121(2):179–188

    CAS  PubMed  Google Scholar 

  23. Cho JH, Johnson GVW. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem, 2004,88(2):349–358

    Article  CAS  PubMed  Google Scholar 

  24. Moreno FJ, Medina M, Pérez M, et al. Glycogen synthase kinase 3 phosphorylates recombinant human tau protein at serine-262 in the presence of heparin (or tubulin). FEBS Lett, 1995,372(1):65–68

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Zhang Y, Aman Y, et al. Amyloid-β toxicity modulates tau phosphorylation through the PAX6 signalling pathway. Brain J Neurol, 2021,144(9):2759–2770

    Article  Google Scholar 

  26. Avila J, Wandosell F, Hernández F. Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Rev Neurother, 2010,10(5):703–710

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y wu, Thompson R, Zhang H, et al. APP processing in Alzheimer’s disease. Mol Brain, 2011,4(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ly PT, Wu Y, Zou H, et al. Inhibition of GSK3β-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest, 2013,123(1):224–235

    Article  CAS  PubMed  Google Scholar 

  29. Zhang T, Chen D, Lee TH. Phosphorylation Signaling in APP Processing in Alzheimer’s Disease. Int J Mol Sci, 2019,21(1):209

    Article  PubMed  PubMed Central  Google Scholar 

  30. Feyt C, Pierrot N, Tasiaux B, et al. Phosphorylation of APP695 at Thr668 decreases gamma-cleavage and extracellular Abeta. Biochem Biophys Res Commun, 2007,357(4):1004–1010

    Article  CAS  PubMed  Google Scholar 

  31. Uemura K, Kuzuya A, Shimozono Y, et al. GSK3beta activity modifies the localization and function of presenilin 1. J Biol Chem, 2007,282(21):15823–15832

    Article  CAS  PubMed  Google Scholar 

  32. Woodfield A, Gonzales T, Helmerhorst E, et al. Current Insights on the Use of Insulin and the Potential Use of Insulin Mimetics in Targeting Insulin Signalling in Alzheimer’s Disease. Int J Mol Sci, 2022,23(24):15811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Terwel D, Muyllaert D, Dewachter I, et al. Amyloid activates GSK-3beta to aggravate neuronal tauopathy in bigenic mice. Am J Pathol, 2008,172(3):786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Magdesian MH, Carvalho MMVF, Mendes FA, et al. Amyloid-β Binds to the Extracellular Cysteine-rich Domain of Frizzled and Inhibits Wnt/β-Catenin Signaling. J Biol Chem, 2008,283(14):9359–9368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Giese KP. GSK-3: a key player in neurodegeneration and memory. IUBMB Life, 2009,61(5):516–521

    Article  CAS  PubMed  Google Scholar 

  36. Llorens-Martín M, Jurado-Arjona J, Fuster-Matanzo A, et al. Peripherally triggered and GSK-3β-driven brain inflammation differentially skew adult hippocampal neurogenesis, behavioral pattern separation and microglial activation in response to ibuprofen. Transl Psychiatry, 2014,4(10):e463

    Article  PubMed  PubMed Central  Google Scholar 

  37. Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol, 2006,79(4):173–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. He Y, Hara H, Núñez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci, 2016,41(12):1012–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol, 2010,10(3):210–215

    Article  CAS  PubMed  Google Scholar 

  40. Feng YS, Tan ZX, Wu LY, et al. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev, 2020,64:101192

    Article  CAS  PubMed  Google Scholar 

  41. Halle A, Hornung V, Petzold GC, et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol, 2008,9(8):857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Srinivasula SM, Poyet JL, Razmara M, et al. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem, 2002,277(24):21119–21122

    Article  CAS  PubMed  Google Scholar 

  43. Ojala JO, Sutinen EM, Salminen A, et al. Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J Neuroimmunol, 2008,205(1–2):86–93.

    Article  CAS  PubMed  Google Scholar 

  44. Sutinen EM, Pirttilä T, Anderson G, et al. Proinflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells. J Neuroinflammation, 2012,9:199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu E, Zhou Q, Xie AJ, et al. Tau acetylates and stabilizes β-catenin thereby promoting cell survival. EMBO Rep, 2020,21(3):e48328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation [published correction appears in Nature. Nature, 2011,469(7329):221–225

    Article  CAS  PubMed  Google Scholar 

  47. Hanslik KL, Ulland TK. The Role of Microglia and the Nlrp3 Inflammasome in Alzheimer’s Disease. Front Neurol, 2020,11:570711

    Article  PubMed  PubMed Central  Google Scholar 

  48. Liu H, Wu X, Luo J, et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp Neurol, 2020,329:113302

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Ge Y, Bao H, et al. Redox-sensitive glycogen synthase kinase 3β-directed control of mitochondrial permeability transition: rheostatic regulation of acute kidney injury. Free Radic Biol Med, 2013,65:849–858

    Article  CAS  PubMed  Google Scholar 

  50. Su L, Zhang J, Gomez H, et al. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy, 2023,19(2):401–414

    Article  CAS  PubMed  Google Scholar 

  51. Zheng K, Bai J, Li N, et al. Protective effects of sirtuin 3 on titanium particle-induced osteogenic inhibition by regulating the NLRP3 inflammasome via the GSK-3β/β-catenin signalling pathway. Bioact Mater, 2021,6(10):3343–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy, 2020,16(1):38–51.

    Article  CAS  PubMed  Google Scholar 

  53. Zhao J, Wang H, Huang Y, et al. Lupus nephritis: glycogen synthase kinase 3β promotion of renal damage through activation of the NLRP3 inflammasome in lupus-prone mice. Arthritis Rheumatol, 2015,67(4):1036–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu W, Wang H, Wang Y, et al. Metabolic factors-triggered inflammatory response drives antidepressant effects of exercise in CUMS rats. Psychiatry Res, 2015,228(3):257–264

    Article  CAS  PubMed  Google Scholar 

  55. Arumugam S, Qin Y, Liang Z, et al. GSK3β mediates the spatiotemporal dynamics of NLRP3 inflammasome activation. Cell Death Differ, 2022,29(10):2060–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hodson R. Alzheimer’s disease. Nature, 2018,559(7715):S1

    Article  CAS  PubMed  Google Scholar 

  57. Md S, Alhakamy NA, Alfaleh MA, et al. Mechanisms Involved in Microglial-Interceded Alzheimer’s Disease and Nanocarrier-Based Treatment Approaches. J Pers Med, 2021,11(11):1116

    Article  PubMed  PubMed Central  Google Scholar 

  58. Alafuzoff I, Iqbal K, Friden H, et al. Histopathological criteria for progressive dementia disorders: clinical-pathological correlation and classification by multivariate data analysis. Acta Neuropathol, 1987,74(3):209–225

    Article  CAS  PubMed  Google Scholar 

  59. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem, 1980,107(2):519–527

    Article  CAS  PubMed  Google Scholar 

  60. Nikoulina SE, Ciaraldi TP, Mudaliar S, et al. Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes, 2000,49(2):263–271

    Article  CAS  PubMed  Google Scholar 

  61. Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res, 2020,1867(5):118664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu X, Wu D, He X, et al. circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer, 2019,18(1):160

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wu Q, Ma J, Wei J, et al. lncRNA SNHG11 Promotes Gastric Cancer Progression by Activating the Wnt/β-Catenin Pathway and Oncogenic Autophagy. Mol Ther, 2021,29(3):1258–1278

    Article  CAS  PubMed  Google Scholar 

  64. Ghoshal N, Smiley JF, DeMaggio AJ, et al. A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am J Pathol, 1999,155(4):1163–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang S, Lachance BB, Mattson MP, et al. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol, 2021,204:102089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev, 2013,12(1):289–309

    Article  CAS  PubMed  Google Scholar 

  67. Scheltens P, Blennow K, Breteler MM, et al. Alzheimer’s disease. Lancet, 2016,388(10043):505–517

    Article  CAS  PubMed  Google Scholar 

  68. KIDD M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature, 1963,197:192–193

    Article  CAS  PubMed  Google Scholar 

  69. Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev, 2013,12(1):289–309

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y, Tian Q, Hao Y, et al. The kinase complex mTORC2 promotes the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis. Nat Immunol, 2022,23(2):303–317

    Article  PubMed  Google Scholar 

  71. Liao S, Wu J, Liu R, et al. A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol, 2020,36:101644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cuadrado A, Kügler S, Lastres-Becker I. Pharmacological targeting of GSK-3 and NRF2 provides neuroprotection in a preclinical model of tauopathy. Redox Biol, 2018,14:522–534

    Article  CAS  PubMed  Google Scholar 

  73. Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy, 2020,16(1):38–51

    Article  CAS  PubMed  Google Scholar 

  74. Lv H, Liu Q, Wen Z, et al. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biol, 2017,12:311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang X, He S, Lu W, et al. Glycogen synthase kinase-3β (GSK-3β) deficiency inactivates the NLRP3 inflammasome-mediated cell pyroptosis in LPS-treated periodontal ligament cells (PDLCs). In Vitro Cell Dev Biol Anim, 2021,57(4):404–414

    Article  CAS  PubMed  Google Scholar 

  76. Chan EWL, Krishnansamy S, Wong C, et al. The NLRP3 inflammasome is involved in the neuroprotective mechanism of neural stem cells against microglia-mediated toxicity in SH-SY5Y cells via the attenuation of tau hyperphosphorylation and amyloidogenesis. Neurotoxicology, 2019,70:91–98

    Article  CAS  PubMed  Google Scholar 

  77. Corcoran SE, Halai R, Cooper MA. Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacol Rev, 2021,73(3):968–1000

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-chuan Wang.

Ethics declarations

The authors have declared that they have no conflicts of interest.

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 92049107 and No. 31929002), the Innovative Research Groups of the National Natural Science Foundation of China (No. 81721005), and the Academic Frontier Youth Team Project to Xiaochuan Wang from Huazhong University of Science and Technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Yr., Guo, Zq., Guo, Q. et al. Glycogen Synthase Kinase-3β, NLRP3 Inflammasome, and Alzheimer’s Disease. CURR MED SCI 43, 847–854 (2023). https://doi.org/10.1007/s11596-023-2788-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2788-4

Key words

Navigation