Skip to main content
Log in

Circular RNAs: Diagnostic and Therapeutic Perspectives in CNS Diseases

  • Review
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are a class of regulatory non-coding RNAs characterized by the presence of covalently closed ends. A growing body of evidence suggests that circRNAs play important roles in physiology and pathology. In particular, accumulating data on circRNA functions in various central nervous system (CNS) diseases and their correlations indicate that circRNAs are critical contributors to the onset and development of brain disorders. In this review, we focus on the regulatory and functional roles of circRNAs in CNS diseases, highlighting their diagnostic and therapeutic potential, with the aim of providing new insights into CNS diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beermann J, Piccoli MT, Viereck J, et al. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev, 2016,96(4):1297–1325

    Article  CAS  PubMed  Google Scholar 

  2. Hombach S, Kretz M. Non-coding RNAs: Classification, Biology and Functioning. Adv Exp Med Biol, 2016,937:3–17

    Article  CAS  PubMed  Google Scholar 

  3. Zhang P, Wu W, Chen Q, et al. Non-Coding RNAs and their Integrated Networks. J Integr Bioinform, 2019,16(3):20190027

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet, 2011,12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  5. Li S, Teng S, Xu J, et al. Microarray is an efficient tool for circRNA profiling. Brief Bioinform, 2019,20(4):1420–1433

    Article  CAS  PubMed  Google Scholar 

  6. Bai Y, Ren H, Bian L, et al. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull, 2023,39(3):440–452

    Article  CAS  PubMed  Google Scholar 

  7. Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol, 2015,12(4):381–388

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shafabakhsh R, Mirhosseini N, Chaichian S, et al. Could circRNA be a new biomarker for pre-eclampsia?. Mol Reprod Dev, 2019,86(12):1773–1780

    Article  CAS  PubMed  Google Scholar 

  9. Bai Y, Ren H, Zhu Y, et al. Diagnosis and prognostic value of circDLGAP4 in acute ischemic stroke and its correlation with outcomes. Front Neurol, 2022,13: 931435

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peng D, Luo L, Zhang X, et al. CircRNA: An emerging star in the progression of glioma. Biomed Pharmacother, 2022,151:113150

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Sun D, Pu W, et al. Circular RNAs in Cancer: Biogenesis, Function, and Clinical Significance. Trends Cancer, 2020,6(4):319–336

    Article  CAS  PubMed  Google Scholar 

  12. Rybak-Wolf A, Stottmeister C, Glazar P, et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol Cell, 2015,58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  13. Najafi S, Aghaei Zarch SM, Majidpoor J, et al. Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol, 2023,225:1038–1048

    Article  CAS  PubMed  Google Scholar 

  14. Wu DP, Zhao YD, Yan QQ, et al. Circular RNAs: emerging players in brain aging and neurodegenerative diseases. J Pathol, 2023,259(1):1–9

    Article  CAS  PubMed  Google Scholar 

  15. Shen L, Bai Y, Han B, et al. Non-coding RNA and neuroinflammation: implications for the therapy of stroke. Stroke Vasc Neurol, 2019,4(2):96–98

    Article  PubMed  PubMed Central  Google Scholar 

  16. Unnithan AKA, Mehta P. Hemorrhagic Stroke, in StatPearls. 2021: Treasure Island (FL).

  17. Wang SW, Liu Z, Shi ZS. Non-Coding RNA in Acute Ischemic Stroke: Mechanisms, Biomarkers and Therapeutic Targets. Cell Transplant, 2018,27(12):1763–1777

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mehta SL, Pandi G, Vemuganti R. Circular RNA Expression Profiles Alter Significantly in Mouse Brain After Transient Focal Ischemia. Stroke, 2017,48(9): 2541–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang X, Hamblin MH, Yin KJ. Noncoding RNAs and Stroke. Neuroscientist, 2019,25(1):22–26

    Article  CAS  PubMed  Google Scholar 

  20. Bai Y, Zhang Y, Han B, et al. Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood-Brain Barrier Integrity. J Neurosci, 2018,38(1):32–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao Y, Li J, Li J, et al. The decreased circular RNA hsa_circ_0072309 promotes cell apoptosis of ischemic stroke by sponging miR-100. Eur Rev Med Pharmacol Sci, 2020,24(8):4420–4429

    CAS  PubMed  Google Scholar 

  22. Wu L, Xu H, Zhang W, et al. Circular RNA circCCDC9 alleviates ischaemic stroke ischaemia/reperfusion injury via the Notch pathway. J Cell Mol Med, 2020,24(24):14152–14159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018,14(7):1164–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu F, Han B, Wu S, et al. Circular RNA TLK1 Aggravates Neuronal Injury and Neurological Deficits after Ischemic Stroke via miR-335-3p/TIPARP. J Neurosci, 2019,39(37):7369–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang L, Han B, Zhang Z, et al. Extracellular Vesicle-Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation, 2020,142(6):556–574

    Article  CAS  PubMed  Google Scholar 

  26. Chen W, Wang H, Feng J, et al. Overexpression of circRNA circUCK2 Attenuates Cell Apoptosis in Cerebral Ischemia-Reperfusion Injury via miR-125b-5p/GDF11 Signaling. Mol Ther Nucleic Acids, 2020,22:673–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen W, Wang H, Zhu Z, et al., Exosome-Shuttled circSHOC2 from IPASs Regulates Neuronal Autophagy and Ameliorates Ischemic Brain Injury via the miR-7670-3p/SIRT1 Axis. Mol Ther Nucleic Acids, 2020,22:657–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dai Q, Ma Y, Xu Z, et al. Downregulation of circular RNA HECTD1 induces neuroprotection against ischemic stroke through the microRNA-133b/TRAF3 pathway. Life Sci, 2021,264:118626

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Liu X, Zhao J, et al. Circular RNAs: novel diagnostic and therapeutic targets for ischemic stroke. Expert Rev Mol Diagn, 2020,20(10):1039–1049

    Article  PubMed  Google Scholar 

  30. Bazan HA, Hatfield SA, Brug A, et al. Carotid Plaque Rupture Is Accompanied by an Increase in the Ratio of Serum circR-284 to miR-221 Levels. Circ Cardiovasc Genet, 2017,10(4):e001720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peng X, Jing P, Chen J, et al. The role of circular RNA HECTD1 expression in disease risk, disease severity, inflammation, and recurrence of acute ischemic stroke. J Clin Lab Anal, 2019,33(7):e22954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu X, Ding J, Wang B, et al. Circular RNA DLGAP4 is down-regulated and negatively correlates with severity, inflammatory cytokine expression and pro-inflammatory gene miR-143 expression in acute ischemic stroke patients. Int J Clin Exp Pathol, 2019,12(3):941–948

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong Z, Deng L, Peng Q, et al. CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke. J Cell Physiol, 2020,235(3):2609–2618

    Article  CAS  PubMed  Google Scholar 

  34. Zuo L, Zhang L, Zu J, et al. Circulating Circular RNAs as Biomarkers for the Diagnosis and Prediction of Outcomes in Acute Ischemic Stroke. Stroke, 2020,51(1):319–323

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Liu S, Li X, et al. Circular RNA in Schizophrenia and Depression. Front Psychiatry, 2020,11:392

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gan H, Lei Y, Yuan N, et al. Circular RNAs in depression: Biogenesis, function, expression, and therapeutic potential. Biomed Pharmacother, 2021,137:111244

    Article  CAS  PubMed  Google Scholar 

  37. Bezzi M, Guarnerio J, Pandolfi PP. A circular twist on microRNA regulation. Cell Res, 2017,27(12):1401–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang H, Chen Z, Zhong Z, et al. Total saponins from the leaves of Panax notoginseng inhibit depression on mouse chronic unpredictable mild stress model by regulating circRNA expression. Brain Behav, 2018,8(11):e01127

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Huang R, Cheng M, et al. Gut microbiota from NLRP3-deficient mice ameliorates depressive-like behaviors by regulating astrocyte dysfunction via circHIPK2. Microbiome, 2019,7(1):116

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang Y, Du L, Bai Y, et al. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry, 2020,25(6):1175–1190

    Article  CAS  PubMed  Google Scholar 

  41. Huang R, Zhang Y, Bai Y, et al. N(6)-Methyladenosine Modification of Fatty Acid Amide Hydrolase Messenger RNA in Circular RNA STAG1-Regulated Astrocyte Dysfunction and Depressive-like Behaviors. Biol Psychiatry, 2020,88(5):392–404

    Article  CAS  PubMed  Google Scholar 

  42. Cui X, Niu W, Kong L, et al. hsa_circRNA_103636: potential novel diagnostic and therapeutic biomarker in major depressive disorder. Biomark Med, 2016,10(9): 943–952

    Article  CAS  PubMed  Google Scholar 

  43. Jiang G, Ma Y, An T, et al. Relationships of circular RNA with diabetes and depression. Sci Rep, 2017,7(1):7285

    Article  PubMed  PubMed Central  Google Scholar 

  44. Song R, Bai Y, Li X, et al. Plasma Circular RNA DYM Related to Major Depressive Disorder and Rapid Antidepressant Effect Treated by Visual Cortical Repetitive Transcranial Magnetic Stimulation. J Affect Disord, 2020,274:486–493

    Article  CAS  PubMed  Google Scholar 

  45. Yao G, Niu W, Zhu X, et al. hsa_circRNA_104597: a novel potential diagnostic and therapeutic biomarker for schizophrenia. Biomark Med, 2019,13(5):331–340

    Article  CAS  PubMed  Google Scholar 

  46. McGrath J, Saha S, Chant D, et al. Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev, 2008,30:67–76

    Article  PubMed  Google Scholar 

  47. Nedoluzhko A, Gruzdeva N, Sharko F, et al. The Biomarker and Therapeutic Potential of Circular Rnas in Schizophrenia. Cells, 2020,9(10):2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mahmoudi E, Fitzsimmons C, Geaghan MP, et al. Circular RNA biogenesis is decreased in postmortem cortical gray matter in schizophrenia and may alter the bioavailability of associated miRNA. Neuropsychopharmacology, 2019,44(6):1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zimmerman AJ, Hafez AK, Amoah SK, et al. A psychiatric disease-related circular RNA controls synaptic gene expression and cognition. Mol Psychiatry, 2020,25(11):2712–2727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan G, Wang L, Liu Y, et al. The alterations of circular RNA expression in plasma exosomes from patients with schizophrenia. J Cell Physiol, 2021,236(1):458–467

    Article  CAS  PubMed  Google Scholar 

  51. Thijs RD, Surges R, O’Brien TJ, et al. Epilepsy in adults. Lancet, 2019,393(10172):689–701

    Article  PubMed  Google Scholar 

  52. van der Lende M, Arends JB, Lamberts RJ, et al. The yield of long-term electrocardiographic recordings in refractory focal epilepsy. Epilepsia, 2019,60(11):2215–2223

    Article  PubMed  PubMed Central  Google Scholar 

  53. Surges R, Thijs RD, Tan HL, et al. Sudden unexpected death in epilepsy: risk factors and potential pathomechanisms. Nat Rev Neurol, 2009,5(9):492–504

    Article  CAS  PubMed  Google Scholar 

  54. Massey CA, Sowers LP, Dlouhy BJ, et al. Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat Rev Neurol, 2014,10(5):271–282

    Article  PubMed  PubMed Central  Google Scholar 

  55. Maguire MJ, Jackson CF, Marson AG, et al. Treatments for the Prevention of Sudden Unexpected Death in Epilepsy (SUDEP). Cochrane Database Syst Rev, 2020,4(4):CD011792

    PubMed  Google Scholar 

  56. Shao Y, Chen Y. Pathophysiology and Clinical Utility of Non-coding RNAs in Epilepsy. Front Mol Neurosci, 2017,10:249

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gong GH, An FM, Wang Y, et al. Comprehensive Circular RNA Profiling Reveals the Regulatory Role of the CircRNA-0067835/miR-155 Pathway in Temporal Lobe Epilepsy. Cell Physiol Biochem, 2018,51(3):1399–1409

    Article  CAS  PubMed  Google Scholar 

  58. Lee WJ, Moon J, Jeon D, et al. Possible epigenetic regulatory effect of dysregulated circular RNAs in epilepsy. PLoS One, 2018,13(12):e0209829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gao XY, Mian G, Liu J, et al. CircHivep2 contributes to microglia activation and inflammation via miR-181a-5p/SOCS2 signalling in mice with kainic acid-induced epileptic seizures. J Cell Mol Med, 2020,24(22):12980–12993

    Article  CAS  Google Scholar 

  60. Lin Q, Chen J, Zheng X, et al. Circular RNA Circ_ANKMY2 Regulates Temporal Lobe Epilepsy Progression via the miR-106b-5p/FOXP1 Axis. Neurochem Res, 2020,45(12):3034–3044

    Article  CAS  PubMed  Google Scholar 

  61. Zheng D, Li M, Li G, et al. Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cell Signal, 2021,80:109901

    Article  CAS  PubMed  Google Scholar 

  62. Li J, Lin H, Sun Z, et al. High-Throughput Data of Circular RNA Profiles in Human Temporal Cortex Tissue Reveals Novel Insights into Temporal Lobe Epilepsy. Cell Physiol Biochem, 2018,45(2):677–691

    Article  CAS  PubMed  Google Scholar 

  63. Shao L, Jiang GT, Yang XL, et al. Silencing of circIgf1r plays a protective role in neuronal injury via regulating astrocyte polarization during epilepsy. FASEB J, 2021,35(2):e21330

    Article  CAS  PubMed  Google Scholar 

  64. Zhu Z, Wang S, Cao Q, et al. CircUBQLN1 Promotes Proliferation but Inhibits Apoptosis and Oxidative Stress of Hippocampal Neurons in Epilepsy via the miR-155-Mediated SOX7 Upregulation. J Mol Neurosci, 2021,71(9):1933–1943

    Article  CAS  PubMed  Google Scholar 

  65. Gray LG, Mills JD, Curry-Hyde A, et al. Identification of Specific Circular RNA Expression Patterns and MicroRNA Interaction Networks in Mesial Temporal Lobe Epilepsy. Front Genet, 2020,11:564301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Soria Lopez JA, Gonzalez HM, Leger GC. Alzheimer’s disease. Handb Clin Neurol, 2019,167:231–255

    Article  PubMed  Google Scholar 

  67. Akhter R. Circular RNA and Alzheimer’s Disease. Adv Exp Med Biol, 2018,1087:239–243

    Article  CAS  PubMed  Google Scholar 

  68. Kukull, WA, Bowen JD, Dementia epidemiology. Med Clin North Am, 2002,86(3):573–590

    Article  PubMed  Google Scholar 

  69. Mantzavinos V, Alexiou A. Biomarkers for Alzheimer’s Disease Diagnosis. Curr Alzheimer Res, 2017,14(11):1149–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet, 2013,4:307

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013,495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  72. Zhao Y, Alexandrov PN, Jaber V, et al. Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) is Linked to Deficits in a Natural Circular miRNA-7 Sponge (circRNA; ciRS-7). Genes (Basel), 2016,7(12):116

    Article  PubMed  Google Scholar 

  73. Huang JL, Qin MC, Zhou Y, et al. Comprehensive analysis of differentially expressed profiles of Alzheimer’s disease associated circular RNAs in an Alzheimer’s disease mouse model. Aging (Albany NY), 2018,10(2):253–265

    Article  CAS  PubMed  Google Scholar 

  74. Huang JL, Xu ZH, Yang SM, et al. Identification of Differentially Expressed Profiles of Alzheimer’s Disease Associated Circular RNAs in a Panax Notoginseng Saponins-Treated Alzheimer’s Disease Mouse Model. Comput Struct Biotechnol J, 2018,16:523–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci, 2019,22(11):1903–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yang H, Wang H, Shang H, et al. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease. Cell Cycle, 2019,18(18):2197–2214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 Pathway Mediates Synaptic and Amyloid Precursor Protein Processing Deficits in Alzheimer’s Disease. Neurosci Bull, 2019,35(5):877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen DL, Guo YR, Qi LK, et al. Circular RNA NF1–419 enhances autophagy to ameliorate senile dementia by binding Dynamin-1 and Adaptor protein 2 B1 in AD-like mice. Aging (Albany NY), 2019,11(24):12002–12031

    CAS  Google Scholar 

  79. Liu L, Chen X, Chen YH, et al. Identification of Circular RNA hsa_Circ_0003391 in Peripheral Blood Is Potentially Associated With Alzheimer’s Disease. Front Aging Neurosci, 2020,12:601965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet, 2004,363(9423):1783–1793

    Article  CAS  PubMed  Google Scholar 

  81. Kumar L, Shamsuzzama, Jadiya P, et al. Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson’s Disease. Mol Neurobiol, 2018,55(8):6914–6926

    Article  CAS  PubMed  Google Scholar 

  82. Acharya S, Salgado-Somoza A, Stefanizzi FM, et al. Non-Coding RNAs in the Brain-Heart Axis: The Case of Parkinson’s Disease. Int J Mol Sci, 2020,21(18):6513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sang Q, Liu X, Wang L, et al. CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson’s disease by targeting miR-7. Aging (Albany NY), 2018,10(6):1281–1293

    Article  CAS  PubMed  Google Scholar 

  84. Feng Z, Zhang L, Wang S, et al. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem Biophys Res Commun, 2020,522(2):388–394

    Article  CAS  PubMed  Google Scholar 

  85. Jia E, Zhou Y, Liu Z, et al. Transcriptomic Profiling of Circular RNA in Different Brain Regions of Parkinson’s Disease in a Mouse Model. Int J Mol Sci, 2020,21(8):3006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hanan M, Simchovitz A, Yayon N, et al. A Parkinson’s disease CircRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol Med, 2020,12(9):e11942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ravanidis S, Bougea A, Karampatsi D, et al. Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson’s Disease. Mov Disord, 2021,36(5):1170–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gowen AM, Odegaard KE, Hernandez J, et al. Role of microRNAs in the pathophysiology of addiction. Wiley Interdiscip Rev RNA, 2021,12(3):e1637

    Article  CAS  PubMed  Google Scholar 

  89. Mahmoudi M, Pakpour S, Perry G. Drug-Abuse Nanotechnology: Opportunities and Challenges. ACS Chem Neurosci, 2018,9(10):2288–2298

    Article  CAS  PubMed  Google Scholar 

  90. Huang R, Zhang Y, Han B, et al. Circular RNA HIPK2 regulates astrocyte activation via cooperation of autophagy and ER stress by targeting MIR124-2HG. Autophagy, 2017,13(10):1722–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Yang L, Han B, Zhang Y, et al. Engagement of circular RNA HECW2 in the nonautophagic role of ATG5 implicated in the endothelial-mesenchymal transition. Autophagy, 2018,14(3):404–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li J, Shi Q, Wang Q, et al. Profiling circular RNA in methamphetamine-treated primary cortical neurons identified novel circRNAs related to methamphetamine addiction. Neurosci Lett, 2019,701:146–153

    Article  CAS  PubMed  Google Scholar 

  93. Iparraguirre L, Munoz-Culla M, Prada-Luengo I, et al. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet, 2017,26(18):3564–3572

    Article  CAS  PubMed  Google Scholar 

  94. Zhang SB, Lin SY, Liu M, et al. CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat Commun, 2019,10(1):4119

    Article  PubMed  PubMed Central  Google Scholar 

  95. He J, Huang Z, He M, et al. Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer, 2020,19(1):17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Salzman J, Gawad C, Wang PL, et al. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 2012,7(2):e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang JL, Su M, Wu DP, Functional roles of circular RNAs in Alzheimer’s disease. Ageing Res Rev, 2020,60:101058

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-hong Yao.

Ethics declarations

The authors declare no conflict of interest.

Additional information

This study was supported by grants from the Science and Technology Innovation 2030-Major Project of the Ministry of Science and Technology of China (No. 2021ZD0202904 and No. 2021ZD0202900), the National Natural Science Foundation of China (No. 82230115 and No. 82273914), the National Science Fund for Distinguished Young Scholars (No. 82025033), and the Jiangsu Provincial Key Laboratory of Critical Care Medicine (No. JSKLCCM-2022-02-008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Yao, Hh. Circular RNAs: Diagnostic and Therapeutic Perspectives in CNS Diseases. CURR MED SCI 43, 879–889 (2023). https://doi.org/10.1007/s11596-023-2784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2784-8

Key words

Navigation