Skip to main content
Log in

Glycyrrhizic Acid Protects Glomerular Podocytes Induced by High Glucose by Modulating SNARK/AMPK Signaling Pathway

  • Original Article
  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Diabetic nephropathy is one of the most important microvascular complications of diabetes, which mainly refers to glomerular capillary sclerosis. Podocytes are an important part of glomerular capillaries. Previous clinical and basic studies have shown that fibrosis is the main factor of diabetic nephropathy. This study aimed to assess the protective mechanism of glycyrrhizic acid (GA) on glomerular podocytes induced by high glucose as we hypothesized that GA may have antifibrotic and anti-inflammatory effects on podocytes through regulation of the adenosine 5′-monophosphate-activated protein kinase (AMPK)/sucrose nonfermenting AMPK-related kinase (SNARK) signaling pathway.

Methods

SNARK siRNA was used to transfect podocytes. Real-time quantitative polymerase chain reaction and immunofluorescence staining assays were used for molecular and pathological analysis. The expression levels of key pathway proteins (including TGF-β1, α-SMA, SITR1, AMPKα, LKB1, PGC-1α, NF-κB, IL-6, and TNF-α) were verified by Western blotting. The expression of inflammatory factors in podocytes was detected by ELISA.

Results

We demonstrated that GA decreased the expression of podocyte fibrosis signaling pathway-related factors by upregulating the AMPK pathway and its related factors. However, after transfection of podocytes with SNARK siRNA, there was an increased expression of fibrosis-related factors and inflammation-related factors.

Conclusion

GA can protect podocytes and alleviate fibrosis and inflammation induced by high glucose, which is related to the AMPK signaling pathway. Meanwhile, knockdown of SNARK protein can inhibit the AMPK signaling pathway, aggravate fibrosis, and increase inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsoutsouki J, Wunna W, Chowdhury A, et al. Advances in the management of diabetes: therapies for type 2 diabetes. Postgrad Med J, 2020,96(1140):610–618

    Article  CAS  PubMed  Google Scholar 

  2. Libianto R, Davis TM, Ekinci EI, et al. Advances in type 2 diabetes therapy: a focus on cardiovascular and renal outcomes. Med J Aust, 2020,212(3):133–139

    Article  PubMed  Google Scholar 

  3. Horikoshi S, Fukuda N, Tsunemi A, et al. Contribution of TGF-beta1 and Effects of Gene Silencer Pyrrole-Imidazole Polyamides Targeting TGF-beta1 in Diabetic Nephropathy. Molecules, 2020,25(4):950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chung JY, Chan MK, Li JS, et al. TGF-beta Signaling: From Tissue Fibrosis to Tumor Microenvironment. Int J Mol Sci, 2021,22(14):7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Y, Jia L, Hu Z, et al. AMP-activated protein kinase/myocardin-related transcription factor-A signaling regulates fibroblast activation and renal fibrosis. Kidney Int, 2018,93(1):81–94

    Article  CAS  PubMed  Google Scholar 

  6. Coughlan KA, Valentine RJ, Ruderman NB, et al. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes, 2014,7:241–253

    PubMed  PubMed Central  Google Scholar 

  7. Li NS, Zou JR, Lin H, et al. LKB1/AMPK inhibits TGF-beta1 production and the TGF-beta signaling pathway in breast cancer cells. Tumour Biol, 2016,37(6):8249–8258

    Article  CAS  PubMed  Google Scholar 

  8. Lefebvre DL, Bai Y, Shahmolky N, et al. Identification and characterization of a novel sucrose-non-fermenting protein kinase/AMP-activated protein kinase-related protein kinase, SNARK. Biochem J, 2001,355(2):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goto K, Kato N, Chung RT, et al. Anti-hepatocellular carcinoma properties of the anti-alcoholism drug disulfiram discovered to enzymatically inhibit the AMPK-related kinase SNARK in vitro. Oncotarget, 2016,7(46):74987–74999

    Article  PubMed  PubMed Central  Google Scholar 

  10. Courchet J, Lewis TL, Lee S, et al. Terminal axon branching is regulated by the LKB1-NUAK1 kinase pathway via presynaptic mitochondrial capture. Cell, 2013,153(7):1510–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun XL, Lessard SJ, An D, et al. Sucrose nonfermenting AMPK-related kinase (SNARK) regulates exercise-stimulated and ischemia-stimulated glucose transport in the heart. J Cell Biochem, 2019,120(1):685–696

    Article  CAS  PubMed  Google Scholar 

  12. Liu B, Gan X, Zhao Y, et al. Inhibition of HMGB1 reduced high glucose-induced BMSCs apoptosis via activation of AMPK and regulation of mitochondrial functions. J Physiol Biochem, 2021,77(2):227–235

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J Am Soc Nephrol, 2010,21(2):212–222

    Article  CAS  PubMed  Google Scholar 

  14. Tang Q, Cao Y, Xiong W, et al. Glycyrrhizic acid exerts protective effects against hypoxia/reoxygenation-induced human coronary artery endothelial cell damage by regulating mitochondria. Exp Ther Med, 2020,20(1):335–342

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang YJ, Wang Z, Zhao TQ, et al. Effect of Glycyrrhizic Acid on High Glucose Induced Podocyte Injury in Mice. J Ningxia Med Univ (Chinese), 2022,44(03):267–271

    Google Scholar 

  16. Rajab BS, Albukhari TA, Khan AA, et al. Antioxidative and Anti-Inflammatory Protective Effects of beta-Caryophyllene against Amikacin-Induced Nephrotoxicity in Rat by Regulating the Nrf2/AMPK/AKT and NF-kappaB/TGF-beta/KIM-1 Molecular Pathways. Oxid Med Cell Longev, 2022,2022:4212331

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang YL, Li PB, Han X, et al. Blockage of Fibronectin 1 Ameliorates Myocardial Ischemia/Reperfusion Injury in Association with Activation of AMP-LKB1-AMPK Signaling Pathway. Oxid Med Cell Longev, 2022,2022:6196173

    PubMed  PubMed Central  Google Scholar 

  18. Umanath K, Lewis JB. Update on Diabetic Nephropathy: Core Curriculum. Am J Kidney Dis, 2018,71(6):884–895

    Article  PubMed  Google Scholar 

  19. Bhatt DL, Szarek M, Pitt B, et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med, 2021,384(2):129–139

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Chen JK, Harris RC, et al. EGF receptor deletion in podocytes attenuates diabetic nephropathy. J Am Soc Nephrol, 2015,26(5):1115–1125

    Article  CAS  PubMed  Google Scholar 

  21. Wu M, Yang Z, Zhang C, et al. Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism, 2021,118:154748

    Article  CAS  PubMed  Google Scholar 

  22. Song S, Qiu D, Shi Y, et al. Thioredoxin-interacting protein deficiency alleviates phenotypic alterations of podocytes via inhibition of mTOR activation in diabetic nephropathy. J Cell Physiol, 2019,234(9):16485–16502

    Article  CAS  PubMed  Google Scholar 

  23. Gil CL, Hooker E, Larrivee B, et al. Diabetic Kidney Disease, Endothelial Damage, and Podocyte-Endothelial Crosstalk. Kidney Med, 2020,3(1):105–115

    Article  PubMed  PubMed Central  Google Scholar 

  24. Guo Q, Zhong W, Duan A, et al. Protective or deleterious role of Wnt/beta-catenin signaling in diabetic nephropathy: An unresolved issue. Pharmacol Res, 2019,144:151–157

    Article  CAS  PubMed  Google Scholar 

  25. Chaudhuri A, Ghanim H, Arora P, et al. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease: A review of pathophysiology, mechanisms, and evidence from recent trials. Diabetes Obes Metab, 2022,24(3):365–376

    Article  PubMed  Google Scholar 

  26. Grahammer F, Schell C, Huber TB, et al. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol, 2013,9(10):587–598

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Sant S, Ferrell N, et al. A Biomimetic In Vitro Model of the Kidney Filtration Barrier Using Tissue-Derived Glomerular Basement Membrane. Adv Healthc Mater, 2021,10(16):e2002275

    Article  PubMed  Google Scholar 

  28. Yoshida S, Wei X, Zhang G, et al. Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. J Clin Invest, 2021,131(7):e143988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lu Q, Hou Q, Cao K, et al. Complement factor B in high glucose-induced podocyte injury and diabetic kidney disease. JCI Insight, 2021,6(19):e147716

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lin CL, Hsu YC, Huang YT, et al. A KDM6A-KLF10 reinforcing feedback mechanism aggravates diabetic podocyte dysfunction. EMBO Mol Med, 2019,11(5):e9828

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sheng L, Zhuang S. New Insights Into the Role and Mechanism of Partial Epithelial-Mesenchymal Transition in Kidney Fibrosis. Front Physiol, 2020,11:569322

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li L, Feng Y, Zhang J, et al. Microtubule associated protein 4 phosphorylation-induced epithelial-to-mesenchymal transition of podocyte leads to proteinuria in diabetic nephropathy. Cell Commun Signal, 2022,20(1):115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cherney DZI, Dekkers CCJ, Barbour SJ, et al. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol, 2020,8(7):582–593

    Article  CAS  PubMed  Google Scholar 

  34. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med, 2019,380(24):2295–2306

    Article  CAS  PubMed  Google Scholar 

  35. Gujarati NA, Leonardo AR, Vasquez JM, et al. Loss of Functional SCO2 Attenuates Oxidative Stress in Diabetic Kidney Disease. Diabetes, 2021,db210316

  36. Galvan DL, Long J, Green N, et al. Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice. J Clin Invest, 2019,129(7):2807–2823

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sun W, Wang Y, Zheng Y, et al. The Emerging Role of Sestrin2 in Cell Metabolism, and Cardiovascular and Age-Related Diseases. Aging Dis, 2020,11(1):154–163

    Article  PubMed  PubMed Central  Google Scholar 

  38. Juszczak F, Caron N, Mathew AV, et al. Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int J Mol Sci, 2020,21(21):7994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Song S, Shi C, Bian Y, et al. Sestrin2 remedies podocyte injury via orchestrating TSP-1/TGF-beta1/Smad3 axis in diabetic kidney disease. Cell Death Dis, 2022,13(7):663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu M, Chen G, Li YP, et al. TGF-beta and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res, 2016,4:16009

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhang YD, Zhao SC, Zhu ZS, et al. Cx43- and Smad-Mediated TGF-beta/ BMP Signaling Pathway Promotes Cartilage Differentiation of Bone Marrow Mesenchymal Stem Cells and Inhibits Osteoblast Differentiation. Cell Physiol Biochem, 2017,42(4):1277–1293

    Article  CAS  PubMed  Google Scholar 

  42. Li J, Li N, Yan S, et al. Melatonin attenuates renal fibrosis in diabetic mice by activating the AMPK/PGC1alpha signaling pathway and rescuing mitochondrial function. Mol Med Rep, 2019,19(2):1318–1330

    CAS  PubMed  Google Scholar 

  43. Kim H, Moon SY, Kim JS, et al. Activation of AMP-activated protein kinase inhibits ER stress and renal fibrosis. Am J Physiol Renal Physiol, 2015,308(3):F226–F236

    Article  CAS  PubMed  Google Scholar 

  44. Gamad N, Malik S, Suchal K, et al. Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: Pharmacological effects and molecular mechanisms. Biomed Pharmacother, 2018,97:1544–1553

    Article  CAS  PubMed  Google Scholar 

  45. Wang L, Tian Y, Shang Z, et al. Metformin attenuates the epithelial-mesenchymal transition of lens epithelial cells through the AMPK/TGF-beta/Smad2/3 signalling pathway. Exp Eye Res, 2021,212:108763

    Article  CAS  PubMed  Google Scholar 

  46. van de Vis RAJ, Moustakas A, van der Heide LP, et al. NUAK1 and NUAK2 Fine-Tune TGF-beta Signaling. Cancers (Basel), 2021,13(13):3377

    Article  CAS  PubMed  Google Scholar 

  47. Kolliopoulos C, Raja E, Razmara M, et al. Transforming growth factor beta (TGFbeta) induces NUAK kinase expression to fine-tune its signaling output. J Biol Chem, 2019,294(11):4119–4136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng X, Chen X, Zaeem M, et al. Sesamol Attenuates Neuroinflammation by Regulating the AMPK/SIRT1/NF-kappaB Signaling Pathway after Spinal Cord Injury in Mice. Oxid Med Cell Longev, 2022,2022:8010670

    Article  PubMed  PubMed Central  Google Scholar 

  49. Xu T, Wang S, Li X, et al. Lithium chloride represses abdominal aortic aneurysm via regulating GSK3beta/SIRT1/NF-kappaB signaling pathway. Free Radic Biol Med, 2021,166:1–10

    Article  CAS  PubMed  Google Scholar 

  50. Gao C, Fei X, Wang M, et al. Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int Immunopharmacol, 2022,107:108610

    Article  CAS  PubMed  Google Scholar 

  51. Sun HJ, Xiong SP, Cao X, et al. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-kappaB and STAT3. Redox Biol, 2021,38:101813

    Article  CAS  PubMed  Google Scholar 

  52. Kimura Y, Yanagida T, Onda A, et al. Soluble Uric Acid Promotes Atherosclerosis via AMPK (AMP-Activated Protein Kinase)-Mediated Inflammation. Arterioscler Thromb Vasc Biol, 2020,40(3):570–582

    Article  CAS  PubMed  Google Scholar 

  53. Kato K, Tokuda H, Matsushima-Nishiwaki R, et al. AMPK limits IL-1-stimulated IL-6 synthesis in osteoblasts: involvement of IkappaB/NF-kappaB pathway. Cell Signal, 2012,24(8):1706–1712

    Article  CAS  PubMed  Google Scholar 

  54. Oh H, Park SH, Kang MK, et al. Asaronic Acid Attenuates Macrophage Activation toward M1 Phenotype through Inhibition of NF-kappaB Pathway and JAK-STAT Signaling in Glucose-Loaded Murine Macrophages. J Agric Food Chem, 2019,67(36):10069–10078

    Article  CAS  PubMed  Google Scholar 

  55. Cao XJ, Wu R, Qian HY, et al. Metformin attenuates diabetic neuropathic pain via AMPK/NF-kappaB signaling pathway in dorsal root ganglion of diabetic rats. Brain Res, 2021,1772:147663

    Article  CAS  PubMed  Google Scholar 

  56. Li F, Chen Y, Li Y, et al. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-kappaB pathway. Eur J Pharmacol, 2020,886:173449

    Article  CAS  PubMed  Google Scholar 

  57. Mancini SJ, White AD, Bijland S, et al. Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol, 2017,440:44–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang W, Shang WL, Wang HD, et al. Sirt1 overexpression protects murine osteoblasts against TNF-alpha-induced injury in vitro by suppressing the NF-kappaB signaling pathway. Acta Pharmacol Sin, 2012,33(5):668–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lee IY, Lim JM, Cho H, et al. MST1 Negatively Regulates TNFalpha-Induced NF-kappaB Signaling through Modulating LUBAC Activity. Mol Cell, 2019,73(6):1138–1149.e6

    Article  CAS  PubMed  Google Scholar 

  60. Li HN, Yang QQ, Wang WT, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-alpha through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation, 2021,18(1):150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fadaei R, Bagheri N, Heidarian E, et al. Serum levels of IL-32 in patients with type 2 diabetes mellitus and its relationship with TNF-alpha and IL-6. Cytokine, 2020,125:154832

    Article  CAS  PubMed  Google Scholar 

  62. Pang R, Gu D. Triptolide Improves Renal Injury in Diabetic Nephropathy Rats through TGF-beta1/Smads Signal Pathway. Endocr Metab Immune Disord Drug Targets, 2021,21(10):1905–1911

    Article  CAS  PubMed  Google Scholar 

  63. Zitman-Gal T, Einbinder Y, Ohana M, et al. Effect of liraglutide on the Janus kinase/signal transducer and transcription activator (JAK/STAT) pathway in diabetic kidney disease in db/db mice and in cultured endothelial cells. J Diabetes, 2019,11(8):656–664

    Article  CAS  PubMed  Google Scholar 

  64. Johnson DE, O’Keefe RA, Grandis JR, et al. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol, 2018,15(4):234–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-zhang Hou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

This work was supported by the Natural Science Foundation of Ningxia Province (No. 2021AAC03296).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Tq., Li, Y., Zhang, M. et al. Glycyrrhizic Acid Protects Glomerular Podocytes Induced by High Glucose by Modulating SNARK/AMPK Signaling Pathway. CURR MED SCI 43, 696–707 (2023). https://doi.org/10.1007/s11596-023-2765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-023-2765-y

Key words

Navigation