Skip to main content
Log in

Knockdown of UHRF1 ameliorates high glucose-induced podocyte injury by activating SIRT4

  • Original Article
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Backgrounds

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease, and current treatment options to prevent its progression are inadequate. Podocyte injury is crucial to the pathogenesis of DN.

Objective

This study aimed to investigate the effect of UHRF1 on high glucose (HG)-induced podocyte injury and to explore its molecular mechanism.

Results

HG induced MPC5 cells to highly express UHRF1 while downregulating SIRT4. Knockdown of UHRF1 promoted HG-induced proliferation of MPC5 cells and ameliorated HG-induced cell cycle arrest, apoptosis, and ROS levels. Knockdown of UHRF1 ameliorated HG-induced podocyte injury by upregulating SIRT4.

Conclusions

Knockdown of UHRF1 ameliorates HG-induced podocyte injury by upregulating SIRT4, indicating that UHRF1 may be a novel target for preventing DN in podocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Abdullah O et al (2021) Thymoquinone Is a multitarget single Epidrug that inhibits the UHRF1 protein complex. Genes (basel) 12(5):622

    Article  CAS  PubMed  Google Scholar 

  • Aziz S et al (2021) Can newer Anti-diabetic therapies delay the development of diabetic nephropathy? J Pharm Bioallied Sci 13:341–351

    Article  CAS  PubMed  Google Scholar 

  • Bagheri RK et al (2021) Comparison of atorvastatin and rosuvastatin on preventing contrast-induced-nephropathy in patients undergoing primary percutaneous coronary intervention: a multi-centric randomized triple-blind clinical trial. Signa Vitae 17:44–50

    CAS  Google Scholar 

  • Barutta F, Bellini S, Gruden G (2022) Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (lond) 136:493–520

    Article  PubMed  Google Scholar 

  • Betsinger CN, Cristea IM (2019) Mitochondrial function, metabolic regulation, and human disease viewed through the prism of sirtuin 4 (SIRT4) functions. J Proteome Res 18:1929–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A et al (2021) KLF4 Regulates metabolic homeostasis in response to stress. Cells 10(4):830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang X et al (2022) Glycolysis in the progression of pancreatic cancer. Am J Cancer Res 12:861–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Moura MB et al (2014) Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells. PLoS ONE 9:e106028

    Article  PubMed  Google Scholar 

  • Elkhwanky MS, Hakkola J (2018) Extranuclear sirtuins and metabolic stress. Antioxid Redox Signal 28:662–676

    Article  CAS  PubMed  Google Scholar 

  • Hu Q et al (2019) UHRF1 promotes aerobic glycolysis and proliferation via suppression of SIRT4 in pancreatic cancer. Cancer Lett 452:226–236

    Article  CAS  PubMed  Google Scholar 

  • Jiao D et al (2019) UHRF1 Promotes renal cell carcinoma progression through epigenetic regulation of TXNIP. Oncogene 38:5686–5699

    Article  CAS  PubMed  Google Scholar 

  • Kim JK et al (2020) UHRF1 downmodulation enhances antitumor effects of histone deacetylase inhibitors in retinoblastoma by augmenting oxidative stress-mediated apoptosis. Mol Oncol 14:329–346

    Article  CAS  PubMed  Google Scholar 

  • Lei M et al (2022) Long non-coding RNA TUG1 sponges microRNA-9 to protect podocytes from high glucose-induced apoptosis and mitochondrial dysfunction via SIRT1 upregulation. Exp Ther Med 23:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin ST et al (2019) Molecular and functional characterization of sirt4 and sirt6 in Megalobrama amblycephala under high glucose metabolism. Comp Biochem Physiol B Biochem Mol Biol 231:87–97

    Article  CAS  PubMed  Google Scholar 

  • Mancini M, Magnani E, Macchi F, Bonapace IM (2021) The multi-functionality of UHRF1: epigenome maintenance and preservation of genome integrity. Nucleic Acids Res 49:6053–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagase N et al (2022) Efficacy of probiotics on the modulation of gut microbiota in the treatment of diabetic nephropathy. World J Diabetes 13:150–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Patnaik D, Esteve PO, Pradhan S (2018) Targeting the SET and RING-associated (SRA) domain of ubiquitin-like, PHD and ring finger-containing 1 (UHRF1) for anti-cancer drug development. Oncotarget 9:26243–26258

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng R et al (2015) Promoter hypermethylation of let-7a-3 is relevant to its down-expression in diabetic nephropathy by targeting UHRF1. Gene 570:57–63

    Article  CAS  PubMed  Google Scholar 

  • Saeki N et al (2022) Epigenetic regulator UHRF1 suppressively orchestrates pro-inflammatory gene expression in rheumatoid arthritis. J Clin Invest. https://doi.org/10.1172/JCI150533

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakai H et al (2022) Uhrf1 governs the proliferation and differentiation of muscle satellite cells. Iscience 25(3):103928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharif T et al (2010) Red wine polyphenols cause growth inhibition and apoptosis in acute lymphoblastic leukaemia cells by inducing a redox-sensitive up-regulation of p73 and down-regulation of UHRF1. Eur J Cancer 46:983–994

    Article  CAS  PubMed  Google Scholar 

  • Shi JX, Wang QJ, Li H, Huang Q (2017) SIRT4 overexpression protects against diabetic nephropathy by inhibiting podocyte apoptosis. Exp Ther Med 13:342–348

    Article  CAS  PubMed  Google Scholar 

  • Shi X et al (2020) Silencing UHRF1 enhances cell autophagy to prevent articular chondrocytes from apoptosis in osteoarthritis through PI3K/AKT/mTOR signaling pathway. Biochem Biophys Res Commun 529:1018–1024

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Chen XF, Chen HZ, Liu DP (2017) Mitochondrial Sirtuins in cardiometabolic diseases. Clin Sci (lond) 131:2063–2078

    Article  CAS  PubMed  Google Scholar 

  • Tomaselli D, Steegborn C, Mai A, Rotili D (2020) Sirt4: A multifaceted enzyme at the crossroads of mitochondrial metabolism and cancer. Front Oncol 10:474

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H et al (2021) The Wnt signaling pathway in diabetic nephropathy. Front Cell Dev Biol 9:701547

    Article  PubMed  Google Scholar 

  • Xu S et al (2020) Tanshinone IIA ameliorates streptozotocin-Induced Diabetic nephropathy, partly by attenuating PERK pathway-induced fibrosis. Drug Des Devel Ther 14:5773–5782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X et al (2021) FOXM1-activated SIRT4 inhibits NF-kappaB signaling and NLRP3 inflammasome to alleviate kidney injury and podocyte pyroptosis in diabetic nephropathy. Exp Cell Res 408:112863

    Article  CAS  PubMed  Google Scholar 

  • Yang Y et al (2020) Lapatinib promotes ovarian cancer cell apoptosis through mROS-HtrA2/Omi pathways. Eur J Gynaecol Oncol 41:598–603

    Article  Google Scholar 

Download references

Acknowledgement

Not Applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

FH designed the study, completed the experiment and supervised the data collection, JW analyzed the data, interpreted the data, FH and JW prepare the manuscript for publication and reviewed the draft of the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Jing Wei.

Ethics declarations

Conflict of interest

Author Fei Huang declares that he/she has no conflict of interest, author Jing Wei declares that he/she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

13273_2023_371_MOESM1_ESM.jpg

Supplementary file1 MPC5 cells were treated with 30 nM glucose, UHRF1, and vector. A: Flow cytometry was used to detect cell cycle; C: Western blots showing the expression of CyclinD and CDK4; Repetition = 3. * p <0.05, *** p < 0.001 vs. HG +vector. (JPG 1748 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, F., Wei, J. Knockdown of UHRF1 ameliorates high glucose-induced podocyte injury by activating SIRT4. Mol. Cell. Toxicol. (2023). https://doi.org/10.1007/s13273-023-00371-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13273-023-00371-0

Keywords

Navigation